From 4313f3f642c2251487ea32ce8e0d20187312f451 Mon Sep 17 00:00:00 2001 From: Ulrik Buchholtz Date: Wed, 24 Oct 2018 17:07:35 +0200 Subject: [PATCH] working on truncatedness of suspensions of sets --- homotopy/susp_pset.hlean | 114 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 114 insertions(+) create mode 100644 homotopy/susp_pset.hlean diff --git a/homotopy/susp_pset.hlean b/homotopy/susp_pset.hlean new file mode 100644 index 0000000..9539ec7 --- /dev/null +++ b/homotopy/susp_pset.hlean @@ -0,0 +1,114 @@ +/- +Copyright (c) 2018 Ulrik Buchholtz. All rights reserved. +Released under Apache 2.0 license as described in the file LICENSE. +Authors: Ulrik Buchholtz +-/ + +import algebra.group_theory hit.set_quotient types.list homotopy.vankampen + homotopy.susp .pushout ..algebra.free_group + +open eq pointed equiv is_equiv is_trunc set_quotient sum list susp trunc algebra + group pi pushout is_conn fiber unit function category paths + +-- special purpose lemmas +definition tr_trunc_eq (A : Type) (a : A) {x y : A} (p : x = y) (q : x = a) + : transport (λ(z : A), trunc 0 (z = a)) p (tr q) = tr (p⁻¹ ⬝ q) := +by induction p; induction q; reflexivity + +namespace susp + section + universe variable u + parameters (A : pType.{u}) [H : is_set A] + include H + + local notation `F` := Π₁⇒ (λ(a : A), star) + + local abbreviation C : Groupoid := Groupoid_bpushout (@id A) F F + local abbreviation N : C := inl star + local abbreviation S : C := inr star + +-- local notation `N` := a + + -- hom group of fundamental groupoid is fundamental group + -- the fundamental group of the suspension is the free group on A + -- could go via van Kampen, but would have to compose with opposite, which is not so well developed + -- definition fundamental_group_of_susp : π₁(⅀ A) ≃g free_group A := + -- sorry + + /- + van Kampen instead? + + game plan: +1. lift to 1-connected cover +2. apply flattening lemma +3. provide equivalences F A ≃ ∥N = N∥ ≃ ∥S = N∥ +4. move to is_contr +5. induction induction induction! + -/ + + definition pglueNS (a : A) : hom N S := + class_of [ bpushout_prehom_index.DE (@id A) F F a ] + + definition pglueSN (a : A) : hom S N := + class_of [ bpushout_prehom_index.ED (@id A) F F a ] + + definition f : A × hom N N → hom S N := + prod.rec (λ a p, p ∘ pglueSN a) + + definition g : A × trunc 0 (@susp.north A = @susp.north A) → trunc 0 (@susp.south A = @susp.north A) := + prod.rec (λ a p, tconcat (tr (merid a)⁻¹) p) + + --set_option pp.notation false + --set_option pp.implicit true + + + definition foo : (Σ(z : susp A), trunc 0 (z = susp.north)) ≃ pushout prod.pr2 g := + begin + apply equiv.trans !pushout.flattening', + fapply pushout.equiv, + { apply sigma.equiv_prod }, + { apply sigma.sigma_unit_left }, + { apply sigma.sigma_unit_left }, + { intro z, induction z with a p, induction p with p, reflexivity }, + { intro z, induction z with a p, induction p with p, apply tr_trunc_eq } + end + + definition bar : pushout prod.pr2 g ≃ pushout prod.pr2 f := + begin + fapply pushout.equiv, + { apply prod.prod_equiv_prod_right, apply vankampen }, + { apply vankampen }, + { apply vankampen }, + { intro z, induction z with a p, reflexivity }, + { intro z, induction z with a p, + change (encode (@id A) (λ(z : A), star) (λ(z : A), star) (tconcat (tr (merid a)⁻¹) p)) + = (encode (@id A) (λ(z : A), star) (λ(z : A), star) p ∘ pglueSN a), + revert p, fapply @trunc.rec 0 (@susp.north A = @susp.north A), + { intro p, apply is_trunc_succ, apply is_trunc_eq, apply is_set_code }, intro p, + apply trans (encode_tcon (@id A) (λ(z : A), star) (λ(z : A), star) (tr (merid a)⁻¹) (tr p)), + apply ap (λ h, encode (@id A) (λ(z : A), star) (λ(z : A), star) (tr p) ∘ h), + apply encode_decode_singleton } + end + + definition is_contr_susp_fiber_tr : is_contr (Σ(z : susp A), trunc 0 (z = susp.north)) := sorry + + definition pfiber_susp_equiv_sigma : pfiber (ptr 1 (⅀ A)) ≃ (Σ(z : susp A), trunc 0 (z = susp.north)) := + begin + apply equiv.trans !fiber.sigma_char, + apply sigma.sigma_equiv_sigma_right, + intro z, apply tr_eq_tr_equiv + end + + definition is_trunc_susp_of_is_set : is_trunc 1 (susp A) := + begin + apply is_trunc_of_is_equiv_tr, + apply is_equiv_of_is_contr_fun, + fapply @is_conn.elim -1 (ptrunc 1 (⅀ A)), + change is_contr (pfiber (ptr 1 (⅀ A))), + apply is_contr_equiv_closed_rev pfiber_susp_equiv_sigma, + apply is_contr_susp_fiber_tr + end + + end + +end susp