fix connectivity levels, they were off by one

This commit is contained in:
Floris van Doorn 2018-01-17 19:12:13 -05:00
parent 9cf33dd3a7
commit 44cf88a2a5
2 changed files with 20 additions and 21 deletions

View file

@ -15,16 +15,16 @@ set_option pp.binder_types true
structure Grp.{u} (n k : ) : Type.{u+1} := /- (n,k)Grp, denoted here as [n;k]Grp -/
(car : ptrunctype.{u} n)
(B : pconntype.{u} k)
(B : pconntype.{u} (k.-1))
(e : car ≃* Ω[k] B)
structure InfGrp.{u} (k : ) : Type.{u+1} := /- (∞,k)Grp, denoted here as [∞;k]Grp -/
(car : pType.{u})
(B : pconntype.{u} k)
(B : pconntype.{u} (k.-1))
(e : car ≃* Ω[k] B)
structure ωGrp (n : ) := /- (n,ω)Grp, denoted here as [n;ω]Grp -/
(B : Π(k : ), (n+k)-Type*[k])
(B : Π(k : ), (n+k)-Type*[k.-1])
(e : Π(k : ), B k ≃* Ω (B (k+1)))
attribute InfGrp.car Grp.car [coercion]
@ -52,19 +52,19 @@ set_option pp.binder_types true
local attribute [instance] is_trunc_B
/- some equivalences -/
definition Grp_equiv (n k : ) : [n;k]Grp ≃ (n+k)-Type*[k] :=
let f : Π(B : Type*[k]) (H : Σ(X : n-Type*), X ≃* Ω[k] B), (n+k)-Type*[k] :=
definition Grp_equiv (n k : ) : [n;k]Grp ≃ (n+k)-Type*[k.-1] :=
let f : Π(B : Type*[k.-1]) (H : Σ(X : n-Type*), X ≃* Ω[k] B), (n+k)-Type*[k.-1] :=
λB' H, ptruncconntype.mk B' (is_trunc_B (Grp.mk H.1 B' H.2)) pt _
in
calc
[n;k]Grp ≃ Σ(B : Type*[k]), Σ(X : n-Type*), X ≃* Ω[k] B : sorry
... ≃ Σ(B : (n+k)-Type*[k]), Σ(X : n-Type*), X ≃* Ω[k] B :
[n;k]Grp ≃ Σ(B : Type*[k.-1]), Σ(X : n-Type*), X ≃* Ω[k] B : sorry
... ≃ Σ(B : (n+k)-Type*[k.-1]), Σ(X : n-Type*), X ≃* Ω[k] B :
@sigma_equiv_of_is_embedding_left _ _ _ sorry ptruncconntype.to_pconntype sorry
(λB' H, fiber.mk (f B' H) sorry)
... ≃ Σ(B : (n+k)-Type*[k]), Σ(X : n-Type*),
... ≃ Σ(B : (n+k)-Type*[k.-1]), Σ(X : n-Type*),
X = ptrunctype_of_pType (Ω[k] B) !is_trunc_loopn_nat :> n-Type* :
sigma_equiv_sigma_right (λB, sigma_equiv_sigma_right (λX, sorry))
... ≃ (n+k)-Type*[k] : sigma_equiv_of_is_contr_right
... ≃ (n+k)-Type*[k.-1] : sigma_equiv_of_is_contr_right
definition Grp_eq_equiv {n k : } (G H : [n;k]Grp) : (G = H) ≃ (B G ≃* B H) :=
sorry
@ -72,7 +72,7 @@ set_option pp.binder_types true
definition Grp_eq {n k : } {G H : [n;k]Grp} (e : B G ≃* B H) : G = H :=
(Grp_eq_equiv G H)⁻¹ᵉ e
definition InfGrp_equiv (k : ) : [∞;k]Grp ≃ Type*[k] :=
definition InfGrp_equiv (k : ) : [∞;k]Grp ≃ Type*[k.-1] :=
sorry
-- maybe to do: ωGrp ≃ Σ(X : spectrum), is_sconn n X
@ -124,30 +124,29 @@ set_option pp.binder_types true
definition Loop (G : [n+1;k]Grp) : [n;k+1]Grp :=
Grp.mk (ptrunctype.mk (Ω G) !is_trunc_loop_nat pt)
(connconnect (k+1) (B G))
abstract begin
exact loop_pequiv_loop (e G) ⬝e* (loopn_connect k (B G))⁻¹ᵉ* ⬝e* _
end end
(connconnect k (B G))
(loop_pequiv_loop (e G) ⬝e* (loopn_connect k (B G))⁻¹ᵉ*)
definition Deloop (G : [n;k+1]Grp) : [n+1;k]Grp :=
have is_conn k (B G), from is_conn_pconntype (B G),
have is_trunc (n + (k + 1)) (B G), from is_trunc_B G,
have is_trunc ((n + 1) + k) (B G), from transport (λ(n : ), is_trunc n _) (succ_add n k)⁻¹ this,
Grp.mk (ptrunctype.mk (Ω[k] (B G)) !is_trunc_loopn_nat pt)
(pconntype.mk (B G) !is_conn_of_is_conn_succ_nat pt)
(pconntype.mk (B G) !is_conn_of_is_conn_succ pt)
(pequiv_of_equiv erfl idp)
/- to do: adjunction, and Loop ∘ Deloop = id -/
definition Forget (G : [n;k+1]Grp) : [n;k]Grp :=
have is_conn (k.+1) (B G), from !is_conn_pconntype,
have is_conn k (B G), from !is_conn_pconntype,
Grp.mk G (pconntype.mk (Ω (B G)) !is_conn_loop pt)
abstract begin
refine e G ⬝e* !loopn_succ_in
end end
definition Stabilize (G : [n;k]Grp) : [n;k+1]Grp :=
have is_conn (k+1) (susp (B G)), from !is_conn_susp,
have Hconn : is_conn (k+1) (ptrunc (n + k + 1) (susp (B G))), from !is_conn_ptrunc,
have is_conn k (susp (B G)), from !is_conn_susp,
have Hconn : is_conn k (ptrunc (n + k + 1) (susp (B G))), from !is_conn_ptrunc,
Grp.mk (ptrunctype.mk (ptrunc n (Ω[k+1] (susp (B G)))) _ pt)
(pconntype.mk (ptrunc (n+k+1) (susp (B G))) Hconn pt)
abstract begin

View file

@ -707,7 +707,7 @@ namespace is_trunc
end
lemma is_trunc_of_is_trunc_loopn (m n : ) (A : Type*) (H : is_trunc n (Ω[m] A))
(H2 : is_conn m A) : is_trunc (m + n) A :=
(H2 : is_conn (m.-1) A) : is_trunc (m + n) A :=
begin
revert A H H2; induction m with m IH: intro A H H2,
{ rewrite [nat.zero_add], exact H },
@ -716,11 +716,11 @@ namespace is_trunc
{ apply IH,
{ apply is_trunc_equiv_closed _ !loopn_succ_in },
apply is_conn_loop },
exact is_conn_of_le _ (zero_le_of_nat (succ m))
exact is_conn_of_le _ (zero_le_of_nat m)
end
lemma is_trunc_of_is_set_loopn (m : ) (A : Type*) (H : is_set (Ω[m] A))
(H2 : is_conn m A) : is_trunc m A :=
(H2 : is_conn (m.-1) A) : is_trunc m A :=
is_trunc_of_is_trunc_loopn m 0 A H H2
end is_trunc