From 44d32281fb127860fe0d84abbb3741857d2b3181 Mon Sep 17 00:00:00 2001 From: Egbert Rijke Date: Thu, 27 Apr 2017 18:07:58 -0400 Subject: [PATCH] trying to show that quotient groups of logically equivalent subgroups are isomorphic --- algebra/quotient_group.hlean | 29 +++++++++++++++++++++++++++-- 1 file changed, 27 insertions(+), 2 deletions(-) diff --git a/algebra/quotient_group.hlean b/algebra/quotient_group.hlean index 89cae13..b7be5ec 100644 --- a/algebra/quotient_group.hlean +++ b/algebra/quotient_group.hlean @@ -6,9 +6,9 @@ Authors: Floris van Doorn, Egbert Rijke Constructions with groups -/ -import hit.set_quotient .subgroup ..move_to_lib +import hit.set_quotient .subgroup ..move_to_lib types.equiv -open eq algebra is_trunc set_quotient relation sigma sigma.ops prod trunc function equiv +open eq algebra is_trunc set_quotient relation sigma sigma.ops prod trunc function equiv is_equiv namespace group @@ -269,6 +269,31 @@ namespace group exact H end + definition quotient_group_functor_contr {K L : subgroup_rel A} (H : Π (a : A), K a → L a) : + is_contr ((Σ(g : quotient_ab_group K →g quotient_ab_group L), g ∘g ab_qg_map K ~ ab_qg_map L) ) := + begin + fapply ab_qg_universal_property, + intro a p, + fapply qg_map_eq_one, + exact H a p, + end + + definition quotient_group_iso {K L : subgroup_rel A} (H1 : Π (a : A), K a → L a) (H2 : Π (a : A), L a → K a) : + is_contr (Σ gh : (Σ (g : quotient_ab_group K →g quotient_ab_group L), g ∘g ab_qg_map K ~ ab_qg_map L), + is_equiv (group_fun (pr1 gh))) := + begin + fapply is_trunc_sigma, + exact quotient_group_functor_contr H1, + intro a, induction a with g h, + fapply is_contr_of_inhabited_prop, + fapply adjointify, + rexact group_fun (pr1 (center' (@quotient_group_functor_contr A L K H2))), + have KK : is_contr ((Σ(g' : quotient_ab_group K →g quotient_ab_group K), g' ∘g ab_qg_map K ~ ab_qg_map K) ), from + quotient_group_functor_contr (λ a, (H2 a) ∘ (H1 a)), + -- have KK_path : ⟨g, h⟩ = ⟨id, λ a, refl (ab_qg_map K a)⟩, from eq_of_is_contr ⟨g, h⟩ ⟨id, λ a, refl (ab_qg_map K a)⟩, + repeat exact sorry + end + definition quotient_group_functor [constructor] (φ : G →g G') (h : Πg, N g → N' (φ g)) : quotient_group N →g quotient_group N' := begin