diff --git a/algebra/spectral_sequence.hlean b/algebra/spectral_sequence.hlean index f0702e8..39bad5d 100644 --- a/algebra/spectral_sequence.hlean +++ b/algebra/spectral_sequence.hlean @@ -747,13 +747,14 @@ namespace left_module (s₀ : Z2 → ℕ) (f : Π{n : ℕ} {x : Z2} (h : s₀ x ≤ n), E (s₀ x) x ≃lm E n x) (lb : ℤ → ℤ) - (HDinf : Π(n : agℤ), is_built_from (Dinf n) (λ(k : ℕ), (λx, E (s₀ x) x) (k + lb n, n - (k + lb n)))) + (HDinf : Π(n : agℤ), is_built_from (Dinf n) (λ(k : ℕ), (λx, E (s₀ x) x) (n - (k + lb n), k + lb n))) /- todo: - rename "converges_to" to converging_exact_couple - double-check the definition of converging_spectral_sequence - - construct converging spectral sequence from a converging exact couple (with the additional hypothesis that the degree of i is (1, -1) or something) + - construct converging spectral sequence from a converging exact couple, + - This requires the additional hypothesis that the degree of i is (-1, 1), which is true by reflexivity for the spectral sequences we construct - redefine `⟹` to be a converging spectral sequence -/ diff --git a/cohomology/serre.hlean b/cohomology/serre.hlean index 441a540..79ac456 100644 --- a/cohomology/serre.hlean +++ b/cohomology/serre.hlean @@ -298,5 +298,4 @@ section serre end serre - end spectrum