stuff
This commit is contained in:
parent
b9ed007161
commit
4c713e921d
2 changed files with 66 additions and 0 deletions
|
@ -64,6 +64,39 @@ definition SES_of_surjective_map {B C : AbGroup} (g : B →g C) (Hg : is_surject
|
|||
intro b p, fapply tr, fapply fiber.mk, fapply sigma.mk, exact b, exact p, reflexivity,
|
||||
end
|
||||
|
||||
definition SES_of_homomorphism {A B : AbGroup} (f : A →g B) : SES (ab_kernel f) A (ab_image f) :=
|
||||
begin
|
||||
fapply SES.mk,
|
||||
exact ab_kernel_incl f,
|
||||
exact image_lift f,
|
||||
exact is_embedding_ab_kernel_incl f,
|
||||
exact is_surjective_image_lift f,
|
||||
fapply is_exact.mk,
|
||||
intro a, induction a with a p, fapply subtype_eq, exact p,
|
||||
intro a p, fapply tr, fapply fiber.mk, fapply sigma.mk, exact a,
|
||||
exact calc
|
||||
f a = image_incl f (image_lift f a) : by exact homotopy_of_eq (ap group_fun (image_factor f)) a
|
||||
... = image_incl f 1 : ap (image_incl f) p
|
||||
... = 1 : by exact respect_one (image_incl f),
|
||||
reflexivity
|
||||
end
|
||||
|
||||
definition SES_of_isomorphism_right {B C : AbGroup} (g : B ≃g C) : SES trivial_ab_group B C :=
|
||||
begin
|
||||
fapply SES.mk,
|
||||
exact from_trivial_ab_group B,
|
||||
exact g,
|
||||
exact is_embedding_from_trivial_ab_group B,
|
||||
fapply is_surjective_of_is_equiv,
|
||||
fapply is_exact.mk,
|
||||
intro a, induction a, fapply respect_one,
|
||||
intro b p,
|
||||
have q : g b = g 1,
|
||||
from p ⬝ (respect_one g)⁻¹,
|
||||
note r := eq_of_fn_eq_fn (equiv_of_isomorphism g) q,
|
||||
fapply tr, fapply fiber.mk, exact unit.star, rewrite r,
|
||||
end
|
||||
|
||||
structure hom_SES {A B C A' B' C' : AbGroup} (ses : SES A B C) (ses' : SES A' B' C') :=
|
||||
( hA : A →g A')
|
||||
( hB : B →g B')
|
||||
|
|
|
@ -959,3 +959,36 @@ definition is_surjective_factor : is_surjective h → is_surjective g :=
|
|||
end
|
||||
|
||||
end injective_surjective
|
||||
|
||||
definition AbGroup_of_Group.{u} (G : Group.{u}) (H : Π x y : G, x * y = y * x) : AbGroup.{u} :=
|
||||
begin
|
||||
induction G,
|
||||
fapply AbGroup.mk,
|
||||
assumption,
|
||||
exact ⦃ab_group, struct, mul_comm := H⦄
|
||||
end
|
||||
|
||||
definition trivial_ab_group : AbGroup.{0} :=
|
||||
begin
|
||||
fapply AbGroup_of_Group Trivial_group, intro x y, reflexivity
|
||||
end
|
||||
|
||||
definition trivial_homomorphism (A B : AbGroup) : A →g B :=
|
||||
begin
|
||||
fapply homomorphism.mk,
|
||||
exact λ a, 1,
|
||||
intros, symmetry, exact one_mul 1,
|
||||
end
|
||||
|
||||
definition from_trivial_ab_group (A : AbGroup) : trivial_ab_group →g A :=
|
||||
trivial_homomorphism trivial_ab_group A
|
||||
|
||||
definition is_embedding_from_trivial_ab_group (A : AbGroup) : is_embedding (from_trivial_ab_group A) :=
|
||||
begin
|
||||
fapply is_embedding_of_is_injective,
|
||||
intro x y p,
|
||||
induction x, induction y, reflexivity
|
||||
end
|
||||
|
||||
definition to_trivial_ab_group (A : AbGroup) : A →g trivial_ab_group :=
|
||||
trivial_homomorphism A trivial_ab_group
|
||||
|
|
Loading…
Reference in a new issue