noethers homomorphism theorem

This commit is contained in:
Egbert Rijke 2016-12-02 14:05:20 -05:00
parent bffab663bb
commit 4ea75446ba

View file

@ -149,6 +149,16 @@ namespace group
exact λ g h, idp
end
definition surjective_ab_gq_map {A : AbGroup} (N : subgroup_rel A) : is_surjective (ab_gq_map N) :=
begin
intro x,
induction x,
fapply image.mk,
exact a,
reflexivity,
sorry --Floris please help
end
namespace quotient
notation `⟦`:max a `⟧`:0 := qg_map a _
end quotient
@ -237,6 +247,28 @@ namespace group
{fapply is_prop.elimo} }
end
------------------------------------------------
-- FIRST ISOMORPHISM THEOREM
definition kernel_quotient_extension {A B : AbGroup} (f : A →g B) : quotient_ab_group (kernel_subgroup f) →g B :=
begin
fapply quotient_group_elim f, intro a, intro p, exact p
end
definition kernel_quotient_extension_triangle {A B : AbGroup} (f : A →g B) :
kernel_quotient_extension f ∘g ab_gq_map (kernel_subgroup f) ~ f :=
begin
intro a,
apply quotient_group_compute
end
definition embedding_kernel_quotient_extension {A B : AbGroup} (f : A →g B) :
is_embedding (kernel_quotient_extension f) :=
begin
end
definition ab_group_quotient_homomorphism (A B : AbGroup)(K : subgroup_rel A)(L : subgroup_rel B) (f : A →g B)
(p : Π(a:A), K(a) → L(f a)) : quotient_ab_group K →g quotient_ab_group L :=
begin
@ -278,8 +310,6 @@ is_trivial_subgroup _ (kernel_subgroup(f)) → is_embedding(f) :=
exact q
end
definition
definition ab_group_kernel_equivalent {A B : AbGroup} (C : AbGroup) (f : A →g B)(g : A →g C)(i : C →g B)(H : f = i ∘g g )(K : is_embedding i)
: Π a:A , kernel_subgroup(g)(a) ↔ kernel_subgroup(f)(a) :=
begin
@ -307,7 +337,7 @@ definition ab_group_kernel_quotient_to_image {A B : AbGroup} (f : A →g B)
begin
fapply quotient_group_elim (image_lift f), intro a, intro p,
apply iff.mpr (ab_group_kernel_image_lift _ _ f a) p
end
end
definition is_surjective_kernel_quotient_to_image {A B : AbGroup} (f : A →g B)
: is_surjective (ab_group_kernel_quotient_to_image f) :=