noethers homomorphism theorem
This commit is contained in:
parent
bffab663bb
commit
4ea75446ba
1 changed files with 33 additions and 3 deletions
|
@ -149,6 +149,16 @@ namespace group
|
|||
exact λ g h, idp
|
||||
end
|
||||
|
||||
definition surjective_ab_gq_map {A : AbGroup} (N : subgroup_rel A) : is_surjective (ab_gq_map N) :=
|
||||
begin
|
||||
intro x,
|
||||
induction x,
|
||||
fapply image.mk,
|
||||
exact a,
|
||||
reflexivity,
|
||||
sorry --Floris please help
|
||||
end
|
||||
|
||||
namespace quotient
|
||||
notation `⟦`:max a `⟧`:0 := qg_map a _
|
||||
end quotient
|
||||
|
@ -237,6 +247,28 @@ namespace group
|
|||
{fapply is_prop.elimo} }
|
||||
end
|
||||
|
||||
------------------------------------------------
|
||||
-- FIRST ISOMORPHISM THEOREM
|
||||
|
||||
|
||||
definition kernel_quotient_extension {A B : AbGroup} (f : A →g B) : quotient_ab_group (kernel_subgroup f) →g B :=
|
||||
begin
|
||||
fapply quotient_group_elim f, intro a, intro p, exact p
|
||||
end
|
||||
|
||||
definition kernel_quotient_extension_triangle {A B : AbGroup} (f : A →g B) :
|
||||
kernel_quotient_extension f ∘g ab_gq_map (kernel_subgroup f) ~ f :=
|
||||
begin
|
||||
intro a,
|
||||
apply quotient_group_compute
|
||||
end
|
||||
|
||||
definition embedding_kernel_quotient_extension {A B : AbGroup} (f : A →g B) :
|
||||
is_embedding (kernel_quotient_extension f) :=
|
||||
begin
|
||||
|
||||
end
|
||||
|
||||
definition ab_group_quotient_homomorphism (A B : AbGroup)(K : subgroup_rel A)(L : subgroup_rel B) (f : A →g B)
|
||||
(p : Π(a:A), K(a) → L(f a)) : quotient_ab_group K →g quotient_ab_group L :=
|
||||
begin
|
||||
|
@ -278,8 +310,6 @@ is_trivial_subgroup _ (kernel_subgroup(f)) → is_embedding(f) :=
|
|||
exact q
|
||||
end
|
||||
|
||||
definition
|
||||
|
||||
definition ab_group_kernel_equivalent {A B : AbGroup} (C : AbGroup) (f : A →g B)(g : A →g C)(i : C →g B)(H : f = i ∘g g )(K : is_embedding i)
|
||||
: Π a:A , kernel_subgroup(g)(a) ↔ kernel_subgroup(f)(a) :=
|
||||
begin
|
||||
|
@ -307,7 +337,7 @@ definition ab_group_kernel_quotient_to_image {A B : AbGroup} (f : A →g B)
|
|||
begin
|
||||
fapply quotient_group_elim (image_lift f), intro a, intro p,
|
||||
apply iff.mpr (ab_group_kernel_image_lift _ _ f a) p
|
||||
end
|
||||
end
|
||||
|
||||
definition is_surjective_kernel_quotient_to_image {A B : AbGroup} (f : A →g B)
|
||||
: is_surjective (ab_group_kernel_quotient_to_image f) :=
|
||||
|
|
Loading…
Reference in a new issue