From 5342e4186393e49ee96ff32757830f86e40b631c Mon Sep 17 00:00:00 2001 From: cnewstead Date: Thu, 18 Feb 2016 14:04:05 -0500 Subject: [PATCH] Delete clive.hlean --- homotopy/clive.hlean | 42 ------------------------------------------ 1 file changed, 42 deletions(-) delete mode 100644 homotopy/clive.hlean diff --git a/homotopy/clive.hlean b/homotopy/clive.hlean deleted file mode 100644 index a602661..0000000 --- a/homotopy/clive.hlean +++ /dev/null @@ -1,42 +0,0 @@ -/----- -This is Clive's file for playing around with (h)Lean/Git/Emacs -------/ - -import types.trunc types.arrow_2 types.fiber homotopy.circle - -open eq is_trunc is_equiv nat equiv trunc function circle - - - -namespace clive - -/-- Very easy goal: prove (loop⁻¹)⁻¹ = loop : base = base --/ -theorem symm_symm_loop_eq_loop : (loop⁻¹)⁻¹ = loop := -eq.rec_on loop idp - -/-- Another easy goal: define a group and prove that the left inverse law follows form the right inverse law --/ -structure group (X : Type) := -gpstr :: (unit : X) - (mult : X → X → X) - (inv : X → X) - (assoc_law : Π(a b c : X), mult (mult a b) c = mult a (mult b c)) - (inv_law : Π(a : X), mult a (inv a) = unit) - (unit_law : Π(a : X), mult a unit = a) - -constants (X : Type) (G : group X) -open group - -theorem group_cancel_right : Π(X : Type), Π(G : group X), Π(a b c : X), (mult G a c = mult G b c) → a = b := sorry - -theorem inv_mul_left_eq_unit : Π(X : Type), Π(G : group X), Π(a : X), mult G (inv G a) a = unit G := - take (X : Type) (G : group X) (a : X), - have q : mult G (mult G (inv G a) a) (inv G a) = mult G (unit G) (inv G a), from - calc - mult G (mult G (inv G a) a) (inv G a) = mult G (inv G a) (mult G a (inv G a)) : assoc_law - ... = mult G (inv G a) (unit G) : sorry - ... = inv G a : unit_law - ... = mult G (unit G) (inv G a) : sorry, - group_cancel_right X G (mult G (inv G a) a) (unit G) (inv G a) q - - -end clive