This commit is contained in:
Egbert Rijke 2016-09-16 02:04:08 -04:00
commit 580298d2c7
4 changed files with 77 additions and 41 deletions

View file

@ -220,7 +220,7 @@ namespace group
is_contr (Σ(g : quotient_group N →g G'), g ∘g gq_map N = f) := is_contr (Σ(g : quotient_group N →g G'), g ∘g gq_map N = f) :=
sorry sorry
/- Binary products (direct sums) of Groups -/ /- Binary products (direct product) of Groups -/
definition product_one [constructor] : G × G' := (one, one) definition product_one [constructor] : G × G' := (one, one)
definition product_inv [unfold 3] : G × G' → G × G' := definition product_inv [unfold 3] : G × G' → G × G' :=
λv, (v.1⁻¹, v.2⁻¹) λv, (v.1⁻¹, v.2⁻¹)

View file

@ -6,14 +6,17 @@ Authors: Michael Shulman, Floris van Doorn
-/ -/
import types.int types.pointed types.trunc homotopy.susp algebra.homotopy_group homotopy.chain_complex cubical .splice homotopy.LES_of_homotopy_groups import types.int types.pointed types.trunc homotopy.susp algebra.homotopy_group homotopy.chain_complex cubical .splice homotopy.LES_of_homotopy_groups
open eq nat int susp pointed pmap sigma is_equiv equiv fiber algebra trunc trunc_index pi open eq nat int susp pointed pmap sigma is_equiv equiv fiber algebra trunc trunc_index pi group
/----------------------------------------- /-----------------------------------------
Stuff that should go in other files Stuff that should go in other files
-----------------------------------------/ -----------------------------------------/
attribute equiv.symm equiv.trans is_equiv.is_equiv_ap fiber.equiv_postcompose fiber.equiv_precompose pequiv.to_pmap pequiv._trans_of_to_pmap [constructor] attribute equiv.symm equiv.trans is_equiv.is_equiv_ap fiber.equiv_postcompose fiber.equiv_precompose pequiv.to_pmap pequiv._trans_of_to_pmap ghomotopy_group_succ_in isomorphism_of_eq [constructor]
attribute is_equiv.eq_of_fn_eq_fn' [unfold 3] attribute is_equiv.eq_of_fn_eq_fn' [unfold 3]
attribute isomorphism._trans_of_to_hom [unfold 3]
attribute homomorphism.struct [unfold 3]
attribute pequiv.trans pequiv.symm [constructor]
namespace sigma namespace sigma
@ -26,6 +29,25 @@ open sigma
namespace group namespace group
open is_trunc open is_trunc
definition pSet_of_Group (G : Group) : Set* := ptrunctype.mk G _ 1 definition pSet_of_Group (G : Group) : Set* := ptrunctype.mk G _ 1
definition pmap_of_isomorphism [constructor] {G₁ G₂ : Group} (φ : G₁ ≃g G₂) :
pType_of_Group G₁ →* pType_of_Group G₂ :=
pequiv_of_isomorphism φ
definition pequiv_of_isomorphism_of_eq {G₁ G₂ : Group} (p : G₁ = G₂) :
pequiv_of_isomorphism (isomorphism_of_eq p) = pequiv_of_eq (ap pType_of_Group p) :=
begin
induction p,
apply pequiv_eq,
fapply pmap_eq,
{ intro g, reflexivity},
{ apply is_prop.elim}
end
definition homomorphism_change_fun [constructor] {G₁ G₂ : Group} (φ : G₁ →g G₂) (f : G₁ → G₂)
(p : φ ~ f) : G₁ →g G₂ :=
homomorphism.mk f (λg h, (p (g * h))⁻¹ ⬝ to_respect_mul φ g h ⬝ ap011 mul (p g) (p h))
end group open group end group open group
namespace eq namespace eq
@ -170,6 +192,16 @@ namespace pointed
pequiv_of_equiv (pi_equiv_pi_right g) pequiv_of_equiv (pi_equiv_pi_right g)
begin esimp, apply eq_of_homotopy, intros a, esimp, exact (respect_pt (g a)) end begin esimp, apply eq_of_homotopy, intros a, esimp, exact (respect_pt (g a)) end
definition pcast_commute [constructor] {A : Type} {B C : A → Type*} (f : Πa, B a →* C a)
{a₁ a₂ : A} (p : a₁ = a₂) : pcast (ap C p) ∘* f a₁ ~* f a₂ ∘* pcast (ap B p) :=
phomotopy.mk
begin induction p, reflexivity end
begin induction p, esimp, refine !idp_con ⬝ !idp_con ⬝ !ap_id⁻¹ end
definition pequiv_of_eq_commute [constructor] {A : Type} {B C : A → Type*} (f : Πa, B a →* C a)
{a₁ a₂ : A} (p : a₁ = a₂) : pequiv_of_eq (ap C p) ∘* f a₁ ~* f a₂ ∘* pequiv_of_eq (ap B p) :=
pcast_commute f p
end pointed end pointed
open pointed open pointed
@ -401,17 +433,40 @@ namespace spectrum
definition π_glue (X : spectrum) (n : ) : π*[2] (X (2 - succ n)) ≃* π*[3] (X (2 - n)) := definition π_glue (X : spectrum) (n : ) : π*[2] (X (2 - succ n)) ≃* π*[3] (X (2 - n)) :=
begin begin
symmetry, refine phomotopy_group_pequiv 2 (equiv_glue X (2 - succ n)) ⬝e* _,
refine pequiv_of_eq (phomotopy_group_succ_in (X (2 - n)) 2) ⬝e* _, assert H : succ (2 - succ n) = 2 - n, exact ap succ !sub_sub⁻¹ ⬝ sub_add_cancel (2-n) 1,
assert H : 2 - n = succ (2 - succ n), exact (sub_add_cancel (2-n) 1)⁻¹ ⬝ ap succ !sub_sub, exact pequiv_of_eq (ap (λn, π*[2] (Ω (X n))) H),
refine phomotopy_group_pequiv 2 (loop_pequiv_loop (pequiv_of_eq (ap X H))) ⬝e* _, end
exact phomotopy_group_pequiv 2 (equiv_glue X (2 - succ n))⁻¹ᵉ*
definition πg_glue (X : spectrum) (n : ) : πg[1+1] (X (2 - succ n)) ≃g πg[2+1] (X (2 - n)) :=
begin
refine homotopy_group_isomorphism_of_pequiv 1 (equiv_glue X (2 - succ n)) ⬝g _,
assert H : succ (2 - succ n) = 2 - n, exact ap succ !sub_sub⁻¹ ⬝ sub_add_cancel (2-n) 1,
exact isomorphism_of_eq (ap (λn, πg[1+1] (Ω (X n))) H),
end
definition πg_glue_homotopy_π_glue (X : spectrum) (n : ) : πg_glue X n ~ π_glue X n :=
begin
intro x,
esimp [πg_glue, π_glue],
apply ap (λp, cast p _),
refine !ap_compose'⁻¹ ⬝ !ap_compose'
end end
/- TODO: fill in sorry -/
definition π_glue_square {X Y : spectrum} (f : X →ₛ Y) (n : ) : definition π_glue_square {X Y : spectrum} (f : X →ₛ Y) (n : ) :
π_glue Y n ∘* π→*[2] (f (2 - succ n)) ~* π→*[3] (f (2 - n)) ∘* π_glue X n := π_glue Y n ∘* π→*[2] (f (2 - succ n)) ~* π→*[3] (f (2 - n)) ∘* π_glue X n :=
sorry begin
refine !passoc ⬝* _,
assert H1 : phomotopy_group_pequiv 2 (equiv_glue Y (2 - succ n)) ∘* π→*[2] (f (2 - succ n))
~* π→*[2] (Ω→ (f (succ (2 - succ n)))) ∘* phomotopy_group_pequiv 2 (equiv_glue X (2 - succ n)),
{ refine !phomotopy_group_functor_compose⁻¹* ⬝* _,
refine phomotopy_group_functor_phomotopy 2 !sglue_square ⬝* _,
apply phomotopy_group_functor_compose },
refine pwhisker_left _ H1 ⬝* _, clear H1,
refine !passoc⁻¹* ⬝* _ ⬝* !passoc,
apply pwhisker_right,
refine !pequiv_of_eq_commute ⬝* by reflexivity
end
section section
open chain_complex prod fin group open chain_complex prod fin group
@ -442,7 +497,9 @@ namespace spectrum
Π(v : +3), is_homomorphism (cc_to_fn LES_of_shomotopy_groups v) Π(v : +3), is_homomorphism (cc_to_fn LES_of_shomotopy_groups v)
| (n, fin.mk 0 H) := proof homomorphism.struct (πₛ→[n] f) qed | (n, fin.mk 0 H) := proof homomorphism.struct (πₛ→[n] f) qed
| (n, fin.mk 1 H) := proof homomorphism.struct (πₛ→[n] (spoint f)) qed | (n, fin.mk 1 H) := proof homomorphism.struct (πₛ→[n] (spoint f)) qed
| (n, fin.mk 2 H) := proof is_homomorphism_compose sorry sorry qed | (n, fin.mk 2 H) := proof homomorphism.struct
(homomorphism_LES_of_homotopy_groups_fun (f (2 - n)) (1, 2) ∘g
homomorphism_change_fun (πg_glue Y n) _ (πg_glue_homotopy_π_glue Y n)) qed
| (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end | (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
-- In the comments below is a start on an explicit description of the LES for spectra -- In the comments below is a start on an explicit description of the LES for spectra

View file

@ -1,7 +1,7 @@
import homotopy.join homotopy.smash import homotopy.join homotopy.smash
open eq equiv trunc function bool join sphere sphere_index sphere.ops prod open eq equiv trunc function bool join sphere sphere_index sphere.ops prod
open pointed sigma smash open pointed sigma smash is_trunc
namespace spherical_fibrations namespace spherical_fibrations
@ -18,7 +18,10 @@ namespace spherical_fibrations
pt = pt :> BG n pt = pt :> BG n
definition G_char (n : ) : G n ≃ (S n..-1 ≃ S n..-1) := definition G_char (n : ) : G n ≃ (S n..-1 ≃ S n..-1) :=
sorry calc
G n ≃ Σ(p : S n..-1 = S n..-1), _ : sigma_eq_equiv
... ≃ (S n..-1 = S n..-1) : sigma_equiv_of_is_contr_right
... ≃ (S n..-1 ≃ S n..-1) : eq_equiv_equiv
definition mirror (n : ) : S n..-1 → G n := definition mirror (n : ) : S n..-1 → G n :=
begin begin

View file

@ -63,31 +63,7 @@ begin
{ exact dif_pos p} { exact dif_pos p}
end end
-- definition splice_type {N M : succ_str} (G : N → chain_complex M) (k : ) (m : M) --move
-- (x : stratified N k) : Set* :=
-- G x.1 (iterate S (val x.2) m)
-- -- definition splice_map {N M : succ_str} (G : N → chain_complex M) (k : ) (m : M)
-- -- (x : stratified N k) : Set* :=
-- -- G x.1 (iterate S (val x.2) m)
-- definition splice (N M : succ_str) (G : N → chain_complex M) (k : ) (m : M)
-- (e0 : Πn, G n m ≃* G (S n) (S (iterate S k m))) :
-- chain_complex (stratified N k) :=
-- chain_complex.mk (splice_type G k m)
-- begin
-- intro x, cases x with n l, cases l with l H,
-- refine if K : l = k then _ else _,
-- { intro p, induction p, exact sorry},
-- { exact sorry}
-- -- cases l with l,
-- -- { },
-- -- { }
-- end
-- begin
-- exact sorry
-- end
definition succ_str.add [reducible] {N : succ_str} (n : N) (k : ) : N := definition succ_str.add [reducible] {N : succ_str} (n : N) (k : ) : N :=
iterate S k n iterate S k n