composition/inverse for homotopies of pointed spaces and spectra

This commit is contained in:
Yuri Sulyma 2017-06-08 20:07:46 -06:00
parent cf3dec8fb9
commit 5826288a48
2 changed files with 42 additions and 0 deletions

View file

@ -194,6 +194,26 @@ namespace spectrum
infix ` ~ₛ `:50 := shomotopy
definition shomotopy_compose {N : succ_str} {E F : gen_prespectrum N} {f g h : E →ₛ F} (p : g ~ₛ h) (q : f ~ₛ g) : f ~ₛ h :=
shomotopy.mk
(λn, (shomotopy.to_phomotopy q n) ⬝* (shomotopy.to_phomotopy p n))
begin
intro n,
rewrite (pwhisker_left_trans _),
rewrite ap1_phomotopy_trans,
rewrite (pwhisker_right_trans _),
exact phhconcat ((shomotopy.glue_homotopy q) n) ((shomotopy.glue_homotopy p) n)
end
definition shomotopy_inverse {N : succ_str} {E F : gen_prespectrum N} {f g : E →ₛ F} (p : f ~ₛ g) : g ~ₛ f :=
shomotopy.mk (λn, (shomotopy.to_phomotopy p n)⁻¹*) begin
intro n,
rewrite (pwhisker_left_symm _ _),
rewrite [-ap1_phomotopy_symm],
rewrite (pwhisker_right_symm _ _),
exact phhinverse ((shomotopy.glue_homotopy p) n)
end
------------------------------
-- Suspension prespectra
------------------------------

View file

@ -562,6 +562,28 @@ end injective_surjective
-- Yuri Sulyma's code from HoTT MRC
notation `⅀→`:(max+5) := psusp_functor
notation `⅀⇒`:(max+5) := psusp_functor_phomotopy
notation `Ω⇒`:(max+5) := ap1_phomotopy
definition ap1_phomotopy_symm {A B : Type*} {f g : A →* B} (p : f ~* g) : (Ω⇒ p)⁻¹* = Ω⇒ (p⁻¹*) :=
begin
induction p using phomotopy_rec_on_idp,
rewrite ap1_phomotopy_refl,
rewrite [+refl_symm],
rewrite ap1_phomotopy_refl
end
definition ap1_phomotopy_trans {A B : Type*} {f g h : A →* B} (q : g ~* h) (p : f ~* g) : Ω⇒ (p ⬝* q) = Ω⇒ p ⬝* Ω⇒ q :=
begin
induction p using phomotopy_rec_on_idp,
induction q using phomotopy_rec_on_idp,
rewrite trans_refl,
rewrite [+ap1_phomotopy_refl],
rewrite trans_refl
end
definition psusp_pelim2 {X Y : Type*} {f g : ⅀ X →* Y} (p : f ~* g) : ((loop_psusp_pintro X Y) f) ~* ((loop_psusp_pintro X Y) g) :=
pwhisker_right (loop_psusp_unit X) (Ω⇒ p)
namespace pointed
variables {A₀₀ A₂₀ A₀₂ A₂₂ : Type*}