diff --git a/homotopy/spectrum.hlean b/homotopy/spectrum.hlean index 193481e..116214c 100644 --- a/homotopy/spectrum.hlean +++ b/homotopy/spectrum.hlean @@ -332,18 +332,21 @@ namespace spectrum repeat exact sorry, end + definition is_sequiv_of_smap_issec {N : succ_str} {E F : gen_prespectrum N} (f : E →ₛ F) (H : is_sequiv_smap f) : f ∘ₛ is_sequiv_of_smap_inv f H ~ₛ sid F := + begin + repeat exact sorry + end + definition is_sequiv_of_smap {N : succ_str} {E F : gen_prespectrum N} (f : E →ₛ F) : is_sequiv_smap f → is_sequiv f := begin intro H, fapply is_sequiv.mk, fapply is_sequiv_of_smap_inv f H, fapply is_sequiv_of_smap_isretr f H, - repeat exact sorry + fapply is_sequiv_of_smap_inv f H, + fapply is_sequiv_of_smap_issec f H, end --- definition is_sequiv_psimple {N : succ_str} {E F : gen_prespectrum N} (f : E →ₛ F) : Type := --- Π (n : N), is_pequiv - ------------------------------ -- Suspension prespectra ------------------------------ @@ -566,18 +569,31 @@ namespace spectrum -- note: see also cotensor above /- Prespectrification -/ + definition is_sconnected {N : succ_str} {X Y : gen_prespectrum N} (h : X →ₛ Y) : Type := + Π (E : gen_spectrum N), is_equiv (λ g : Y →ₛ E, g ∘ₛ h) - definition prespectrify [constructor] {N : succ_str} (X : gen_prespectrum N) : gen_prespectrum N := + definition prespectrification [constructor] {N : succ_str} (X : gen_prespectrum N) : gen_prespectrum N := gen_prespectrum.mk (λ n, Ω (X (S n))) (λ n, Ω→ (glue X (S n))) - definition to_prespectrify {N : succ_str} (X : gen_prespectrum N) : X →ₛ prespectrify X := + definition to_prespectrification {N : succ_str} (X : gen_prespectrum N) : X →ₛ prespectrification X := begin fapply smap.mk, exact glue X, intro n, fapply psquare_of_phomotopy, reflexivity end - definition is_leftmap_to_prespectrify_inv {N : succ_str} (X : gen_prespectrum N) (E : gen_spectrum N) : X →ₛ gen_spectrum.to_prespectrum E → prespectrify X →ₛ gen_spectrum.to_prespectrum E := + definition is_sequiv_smap_of_is_spectrum {N : succ_str} (E : gen_prespectrum N) (H : is_spectrum E) : is_sequiv_smap (to_prespectrification E) := + begin + repeat exact sorry + end + + definition is_sequiv_of_spectrum {N : succ_str} (E : gen_spectrum N) : is_sequiv_smap (to_prespectrification E) := + begin + repeat exact sorry + end + + definition is_sconnected_to_prespectrification_inv {N : succ_str} (X : gen_prespectrum N) (E : gen_spectrum N) + : (X →ₛ E) → (prespectrification X →ₛ E) := begin intro f, fapply smap.mk, @@ -586,21 +602,36 @@ namespace spectrum refine (passoc (glue (gen_spectrum.to_prespectrum E) n) (pequiv.to_pmap (equiv_glue (gen_spectrum.to_prespectrum E) n)⁻¹ᵉ*) (Ω→ (to_fun f (S n))))⁻¹* ⬝* _, refine pwhisker_right (Ω→ (to_fun f (S n))) (pright_inv (equiv_glue E n)) ⬝* _, - refine _ ⬝* pwhisker_right (glue (prespectrify X) n) ((ap1_pcompose (pequiv.to_pmap (equiv_glue (gen_spectrum.to_prespectrum E) (S n))⁻¹ᵉ*) (Ω→ (to_fun f (S (S n)))))⁻¹*), + refine _ ⬝* pwhisker_right (glue (prespectrification X) n) ((ap1_pcompose (pequiv.to_pmap (equiv_glue (gen_spectrum.to_prespectrum E) (S n))⁻¹ᵉ*) (Ω→ (to_fun f (S (S n)))))⁻¹*), + refine pid_pcompose (Ω→ (f (S n))) ⬝* _, repeat exact sorry end - definition is_leftmap_to_prespectrify {N : succ_str} (X : gen_prespectrum N) (E : gen_spectrum N) : - is_equiv (λ (f : prespectrify X →ₛ E), f ∘ₛ to_prespectrify X) := + definition is_sconnected_to_prespectrification_isretr {N : succ_str} (X : gen_prespectrum N) (E : gen_spectrum N) (f : prespectrification X →ₛ E) : is_sconnected_to_prespectrification_inv X E (f ∘ₛ to_prespectrification X) = f := begin - fapply adjointify, - exact is_leftmap_to_prespectrify_inv X E, repeat exact sorry end + definition is_sconnected_to_prespectrification_issec {N : succ_str} (X : gen_prespectrum N) (E : gen_spectrum N) (g : X →ₛ E) : + is_sconnected_to_prespectrification_inv X E g ∘ₛ to_prespectrification X = g := + begin + repeat exact sorry + end + + definition is_sconnected_to_prespectrify {N : succ_str} (X : gen_prespectrum N) : + is_sconnected (to_prespectrification X) := + begin + intro E, + fapply adjointify, + exact is_sconnected_to_prespectrification_inv X E, + exact is_sconnected_to_prespectrification_issec X E, + exact is_sconnected_to_prespectrification_isretr X E + end + -- Conjecture - definition is_spectrum_of_local (E : gen_spectrum +ℕ) (Hyp : is_equiv (λ (f : prespectrify (psp_sphere) →ₛ E), f ∘ₛ to_prespectrify (psp_sphere))) : is_spectrum E := + definition is_spectrum_of_local (X : gen_prespectrum +ℕ) (Hyp : is_equiv (λ (f : prespectrification (psp_sphere) →ₛ X), f ∘ₛ to_prespectrification (psp_sphere))) : is_spectrum X := begin + fapply is_spectrum.mk, exact sorry end