diff --git a/README.md b/README.md index 9e4c302..d796019 100644 --- a/README.md +++ b/README.md @@ -29,18 +29,35 @@ Jeremy Avigad, Steve Awodey, Ulrik Buchholtz, Floris van Doorn, Clive Newstead, ### Topology To Do: - HoTT Book sections 8.7, 8.8. +- fiber sequence + + already have the LES + + need shift isomorphism + + Hom'ing into a fiber sequence gives another fiber sequence. - cofiber sequences + + Hom'ing out gives a fiber sequence: if `A → B → coker f` cofiber + sequences, then `X^A → X^B → X^(coker f)` is a fiber sequence. - [prespectra](http://ncatlab.org/nlab/show/spectrum+object) and [spectra](http://ncatlab.org/nlab/show/spectrum), suspension + + try indexing on arbitrary successor structure + + think about equivariant spectra indexed by representations of `G` - [spectrification](http://ncatlab.org/nlab/show/higher+inductive+type#spectrification) + + adjoint to forgetful + + as sequential colimit, prove induction principle (if useful) + + connective spectrum: `is_conn n.-2 Eₙ` - [parametrized spectra](http://ncatlab.org/nlab/show/parametrized+spectrum), parametrized smash and hom between types and spectra - fiber and cofiber sequences of spectra, stability + + limits are levelwise + + colimits need to be spectrified - long exact sequences from (co)fiber sequences of spectra + + indexed on ℤ, need to splice together LES's - [Eilenberg-MacLane spaces](http://ncatlab.org/nlab/show/Eilenberg-Mac+Lane+space) and spectra - Postnikov towers of spectra + + basic definition already there + + fibers of Postnikov sequence unstably and stably - exact couple of a tower of spectra + + need to splice together LES's ### Already Done: - Most things in the HoTT Book up to Section 8.6 (see [this file](https://github.com/leanprover/lean/blob/master/hott/book.md)) - pointed types, maps, homotopies and equivalences - definition of algebraic structures such as groups, rings, fields -- some algebra: quotient, product, free groups. \ No newline at end of file +- some algebra: quotient, product, free groups. diff --git a/homotopy/spherical_fibrations.hlean b/homotopy/spherical_fibrations.hlean index 354317f..506e3c0 100644 --- a/homotopy/spherical_fibrations.hlean +++ b/homotopy/spherical_fibrations.hlean @@ -14,6 +14,28 @@ namespace spherical_fibrations definition pBG [constructor] (n : ℕ) : Type* := pointed.mk' (BG n) + definition G (n : ℕ) : Type₁ := + pt = pt :> BG n + + definition G_char (n : ℕ) : G n ≃ (S n..-1 ≃ S n..-1) := + sorry + + definition mirror (n : ℕ) : S n..-1 → G n := + begin + intro v, apply to_inv (G_char n), + exact sorry + end + +/- + Can we give a fibration P : S n → Type, P base = F n = Ω(BF n) = (S. n ≃* S. n) + and total space sigma P ≃ G (n+1) = Ω(BG (n+1)) = (S n.+1 ≃ S .n+1) + + Yes, let eval : BG (n+1) → S n be the evaluation map +-/ + + definition S_of_BG (n : ℕ) : Ω(pBG (n+1)) → S n := + λ f, f..1 ▸ base + definition BG_succ (n : ℕ) : BG n → BG (n+1) := begin intro X, cases X with X p, @@ -96,15 +118,41 @@ namespace spherical_fibrations - define BG∞ and BF∞ as colimits of BG n and BF n - Ω(BF n) = ΩⁿSⁿ₁ + ΩⁿSⁿ₋₁ (self-maps of degree ±1) - succ_BF n is (n - 2) connected (from Freudenthal) - - pfiber (BG_of_BF n) ≃ S. n + - pfiber (BG_of_BF n) ≃* S. n - π₁(BF n)=π₁(BG n)=ℤ/2ℤ - double covers BSG and BSF - O : BF n → BG 1 = Σ(A : Type), ∥ A = bool ∥ - BSG n = sigma O - π₁(BSG n)=π₁(BSF n)=O - - BSO(n), BSTop(n) + - BSO(n), - find BF' n : Type₀ with BF' n ≃ BF n etc. - canonical bundle γₙ : ℝP(n) → ℝP∞=BO(1) → Type₀ prove T(γₙ) = ℝP(n+1) + - BG∞ = BF∞ (in fact = BGL₁(S), the group of units of the sphere spectrum) + - clutching construction: + any f : S n → SG(n) gives S n.+1 → BSG(n) (mut.mut. for O(n),SO(n),etc.) + - all bundles on S 3 are trivial, incl. tangent bundle + - Adams' result on vector fields on spheres: + there are maximally ρ(n)-1 indep.sections of the tangent bundle of S (n-1) + where ρ(n) is the n'th Radon-Hurwitz number.→ -/ + +-- tangent bundle on S 2: + + namespace two_sphere + + definition tau : S 2 → BG 2 := + begin + intro v, induction v with x, do 2 exact pt, + fapply sigma_eq, + { apply ua, fapply equiv.MK, + { }, + { }, + { }, + { } }, + { } + end + + end two_sphere + end spherical_fibrations