This commit is contained in:
Egbert Rijke 2017-07-08 18:20:55 +01:00
commit 5ac3ce7058
4 changed files with 39 additions and 30 deletions

View file

@ -90,7 +90,12 @@ end
definition cohomology_isomorphism_shomotopy_group_sp_cotensor (X : Type*) (Y : spectrum) {n m : } definition cohomology_isomorphism_shomotopy_group_sp_cotensor (X : Type*) (Y : spectrum) {n m : }
(p : -m = n) : H^n[X, Y] ≃g πₛ[m] (sp_cotensor X Y) := (p : -m = n) : H^n[X, Y] ≃g πₛ[m] (sp_cotensor X Y) :=
sorry /- TODO FOR SSS -/ begin
refine !trunc_ppi_isomorphic_pmap⁻¹ᵍ ⬝g _,
refine parametrized_cohomology_isomorphism_shomotopy_group_spi (λx, Y) p ⬝g _,
apply shomotopy_group_isomorphism_of_pequiv, intro k,
apply pppi_pequiv_ppmap
end
definition unreduced_cohomology_isomorphism_shomotopy_group_sp_ucotensor (X : Type) (Y : spectrum) definition unreduced_cohomology_isomorphism_shomotopy_group_sp_ucotensor (X : Type) (Y : spectrum)
{n m : } (p : -m = n) : uH^n[X, Y] ≃g πₛ[m] (sp_ucotensor X Y) := {n m : } (p : -m = n) : uH^n[X, Y] ≃g πₛ[m] (sp_ucotensor X Y) :=
@ -99,8 +104,6 @@ begin
apply shomotopy_group_isomorphism_of_pequiv, intro k, apply ppmap_add_point apply shomotopy_group_isomorphism_of_pequiv, intro k, apply ppmap_add_point
end end
/- functoriality -/ /- functoriality -/
definition cohomology_functor [constructor] {X X' : Type*} (f : X' →* X) (Y : spectrum) definition cohomology_functor [constructor] {X X' : Type*} (f : X' →* X) (Y : spectrum)
@ -138,23 +141,24 @@ definition cohomology_isomorphism_refl (X : Type*) (Y : spectrum) (n : ) (x :
definition cohomology_isomorphism_right (X : Type*) {Y Y' : spectrum} (e : Πn, Y n ≃* Y' n) definition cohomology_isomorphism_right (X : Type*) {Y Y' : spectrum} (e : Πn, Y n ≃* Y' n)
(n : ) : H^n[X, Y] ≃g H^n[X, Y'] := (n : ) : H^n[X, Y] ≃g H^n[X, Y'] :=
sorry /- TODO FOR SSS -/ cohomology_isomorphism_shomotopy_group_sp_cotensor X Y !neg_neg ⬝g
shomotopy_group_isomorphism_of_pequiv (-n) (λk, pequiv_ppcompose_left (e k)) ⬝g
(cohomology_isomorphism_shomotopy_group_sp_cotensor X Y' !neg_neg)⁻¹ᵍ
definition parametrized_cohomology_isomorphism_right {X : Type*} {Y Y' : X → spectrum} definition parametrized_cohomology_isomorphism_right {X : Type*} {Y Y' : X → spectrum}
(e : Πx n, Y x n ≃* Y' x n) (n : ) : pH^n[(x : X), Y x] ≃g pH^n[(x : X), Y' x] := (e : Πx n, Y x n ≃* Y' x n) (n : ) : pH^n[(x : X), Y x] ≃g pH^n[(x : X), Y' x] :=
parametrized_cohomology_isomorphism_shomotopy_group_spi Y !neg_neg ⬝g parametrized_cohomology_isomorphism_shomotopy_group_spi Y !neg_neg ⬝g
shomotopy_group_isomorphism_of_pequiv (-n) (λk, ppi_pequiv_right sorry) ⬝g shomotopy_group_isomorphism_of_pequiv (-n) (λk, ppi_pequiv_right (λx, e x k)) ⬝g
(parametrized_cohomology_isomorphism_shomotopy_group_spi Y' !neg_neg)⁻¹ᵍ (parametrized_cohomology_isomorphism_shomotopy_group_spi Y' !neg_neg)⁻¹ᵍ
--sorry /- TODO FOR SSS -/
definition unreduced_parametrized_cohomology_isomorphism_right {X : Type} {Y Y' : X → spectrum} definition unreduced_parametrized_cohomology_isomorphism_right {X : Type} {Y Y' : X → spectrum}
(e : Πx n, Y x n ≃* Y' x n) (n : ) : upH^n[(x : X), Y x] ≃g upH^n[(x : X), Y' x] := (e : Πx n, Y x n ≃* Y' x n) (n : ) : upH^n[(x : X), Y x] ≃g upH^n[(x : X), Y' x] :=
sorry /- TODO FOR SSS -/ parametrized_cohomology_isomorphism_right (λx' k, add_point_over_pequiv (λx, e x k) x') n
definition unreduced_ordinary_parametrized_cohomology_isomorphism_right {X : Type} definition unreduced_ordinary_parametrized_cohomology_isomorphism_right {X : Type}
{G G' : X → AbGroup} (e : Πx, G x ≃g G' x) (n : ) : {G G' : X → AbGroup} (e : Πx, G x ≃g G' x) (n : ) :
uopH^n[(x : X), G x] ≃g uopH^n[(x : X), G' x] := uopH^n[(x : X), G x] ≃g uopH^n[(x : X), G' x] :=
sorry /- TODO FOR SSS -/ unreduced_parametrized_cohomology_isomorphism_right (λx, EM_spectrum_pequiv (e x)) n
definition ordinary_cohomology_isomorphism_right (X : Type*) {G G' : AbGroup} (e : G ≃g G') definition ordinary_cohomology_isomorphism_right (X : Type*) {G G' : AbGroup} (e : G ≃g G')
(n : ) : oH^n[X, G] ≃g oH^n[X, G'] := (n : ) : oH^n[X, G] ≃g oH^n[X, G'] :=

View file

@ -5,8 +5,8 @@ Authors: Egbert Rijke
-/ -/
/- /-
The goal of this file is to extend the library of pointed types and pointed maps to support the library of prespectra The goal of this file is to extend the library of pointed types and pointed maps to support the library of prespectra
-/ -/
@ -37,14 +37,14 @@ end
definition psquare_of_pid_top_bot {A B : Type*} {fleft : A →* B} {fright : A →* B} (phtpy : fright ~* fleft) : psquare (pid A) (pid B) fleft fright := definition psquare_of_pid_top_bot {A B : Type*} {fleft : A →* B} {fright : A →* B} (phtpy : fright ~* fleft) : psquare (pid A) (pid B) fleft fright :=
psquare_of_phomotopy ((pcompose_pid fright) ⬝* phtpy ⬝* (pid_pcompose fleft)⁻¹*) psquare_of_phomotopy ((pcompose_pid fright) ⬝* phtpy ⬝* (pid_pcompose fleft)⁻¹*)
print psquare_of_pid_top_bot --print psquare_of_pid_top_bot
--λ phtpy, psquare_of_phomotopy ((pid_pcompose fleft) ⬝* phtpy ⬝* ((pcompose_pid fright)⁻¹*)) --λ phtpy, psquare_of_phomotopy ((pid_pcompose fleft) ⬝* phtpy ⬝* ((pcompose_pid fright)⁻¹*))
definition psquare_of_pid_left_right {A B : Type*} {ftop : A →* B} {fbot : A →* B} (phtpy : ftop ~* fbot) : psquare ftop fbot (pid A) (pid B) := definition psquare_of_pid_left_right {A B : Type*} {ftop : A →* B} {fbot : A →* B} (phtpy : ftop ~* fbot) : psquare ftop fbot (pid A) (pid B) :=
psquare_of_phomotopy ((pid_pcompose ftop) ⬝* phtpy ⬝* ((pcompose_pid fbot)⁻¹*)) psquare_of_phomotopy ((pid_pcompose ftop) ⬝* phtpy ⬝* ((pcompose_pid fbot)⁻¹*))
print psquare_of_pid_left_right --print psquare_of_pid_left_right
definition psquare_hcompose {A B C D E F : Type*} {ftop : A →* B} {fbot : D →* E} {fleft : A →* D} {fright : B →* E} {gtop : B →* C} {gbot : E →* F} {gright : C →* F} (psq_left : psquare ftop fbot fleft fright) (psq_right : psquare gtop gbot fright gright) : psquare (gtop ∘* ftop) (gbot ∘* fbot) fleft gright := definition psquare_hcompose {A B C D E F : Type*} {ftop : A →* B} {fbot : D →* E} {fleft : A →* D} {fright : B →* E} {gtop : B →* C} {gbot : E →* F} {gright : C →* F} (psq_left : psquare ftop fbot fleft fright) (psq_right : psquare gtop gbot fright gright) : psquare (gtop ∘* ftop) (gbot ∘* fbot) fleft gright :=
begin begin
@ -100,7 +100,7 @@ phsquare (pwhisker_left fright phtpy_top) (pwhisker_right fleft phtpy_bot) psq_b
definition ptube_h {A B C D : Type*} {ftop : A →* B} {fbot : C →* D} {fleft fleft' : A →* C} (phtpy_left : fleft ~* fleft') {fright fright' : B →* D} (phtpy_right : fright ~* fright') (psq_back : psquare ftop fbot fleft fright) (psq_front : psquare ftop fbot fleft' fright') : Type := definition ptube_h {A B C D : Type*} {ftop : A →* B} {fbot : C →* D} {fleft fleft' : A →* C} (phtpy_left : fleft ~* fleft') {fright fright' : B →* D} (phtpy_right : fright ~* fright') (psq_back : psquare ftop fbot fleft fright) (psq_front : psquare ftop fbot fleft' fright') : Type :=
phsquare (pwhisker_right ftop phtpy_right) (pwhisker_left fbot phtpy_left) psq_back psq_front phsquare (pwhisker_right ftop phtpy_right) (pwhisker_left fbot phtpy_left) psq_back psq_front
print pinv_right_phomotopy_of_phomotopy --print pinv_right_phomotopy_of_phomotopy
definition psquare_inv_top_bot {A B C D : Type*} {ftop : A ≃* B} {fbot : C ≃* D} {fleft : A →* C} {fright : B →* D} (psq : psquare ftop fbot fleft fright) : psquare ftop⁻¹ᵉ* fbot⁻¹ᵉ* fright fleft := definition psquare_inv_top_bot {A B C D : Type*} {ftop : A ≃* B} {fbot : C ≃* D} {fleft : A →* C} {fright : B →* D} (psq : psquare ftop fbot fleft fright) : psquare ftop⁻¹ᵉ* fbot⁻¹ᵉ* fright fleft :=
begin begin
@ -114,25 +114,25 @@ end
definition p2homotopy_ty_respect_pt {A B : Type*} {f g : A →* B} {H K : f ~* g} (htpy : H ~ K) : Type := definition p2homotopy_ty_respect_pt {A B : Type*} {f g : A →* B} {H K : f ~* g} (htpy : H ~ K) : Type :=
begin begin
induction H with H p, exact p induction H with H p, exact p
end = whisker_right (respect_pt g) (htpy pt) ⬝ end = whisker_right (respect_pt g) (htpy pt) ⬝
begin begin
induction K with K q, exact q induction K with K q, exact q
end end
print p2homotopy_ty_respect_pt --print p2homotopy_ty_respect_pt
structure p2homotopy {A B : Type*} {f g : A →* B} (H K : f ~* g) : Type := structure p2homotopy {A B : Type*} {f g : A →* B} (H K : f ~* g) : Type :=
( to_2htpy : H ~ K) ( to_2htpy : H ~ K)
( respect_pt : p2homotopy_ty_respect_pt to_2htpy) ( respect_pt : p2homotopy_ty_respect_pt to_2htpy)
definition ptube_v_phtpy_bot {A B C D : Type*} definition ptube_v_phtpy_bot {A B C D : Type*}
{ftop ftop' : A →* B} {phtpy_top : ftop ~* ftop'} {ftop ftop' : A →* B} {phtpy_top : ftop ~* ftop'}
{fbot fbot' : C →* D} {phtpy_bot phtpy_bot' : fbot ~* fbot'} (ppi_htpy_bot : phtpy_bot ~~* phtpy_bot') {fbot fbot' : C →* D} {phtpy_bot phtpy_bot' : fbot ~* fbot'} (ppi_htpy_bot : phtpy_bot ~~* phtpy_bot')
{fleft : A →* C} {fright : B →* D} {fleft : A →* C} {fright : B →* D}
{psq_back : psquare ftop fbot fleft fright} {psq_back : psquare ftop fbot fleft fright}
{psq_front : psquare ftop' fbot' fleft fright} {psq_front : psquare ftop' fbot' fleft fright}
(ptb : ptube_v phtpy_top phtpy_bot psq_back psq_front) (ptb : ptube_v phtpy_top phtpy_bot psq_back psq_front)
: ptube_v phtpy_top phtpy_bot' psq_back psq_front : ptube_v phtpy_top phtpy_bot' psq_back psq_front
:= :=
begin begin
induction ppi_htpy_bot using ppi_homotopy_rec_on_idp, induction ppi_htpy_bot using ppi_homotopy_rec_on_idp,
@ -146,12 +146,12 @@ begin
exact id, exact id,
end end
definition ptube_v_left_inv {A B C D : Type*} {ftop : A ≃* B} {fbot : C ≃* D} {fleft : A →* C} {fright : B →* D} definition ptube_v_left_inv {A B C D : Type*} {ftop : A ≃* B} {fbot : C ≃* D} {fleft : A →* C} {fright : B →* D}
(psq : psquare ftop fbot fleft fright) : (psq : psquare ftop fbot fleft fright) :
ptube_v ptube_v
(pleft_inv ftop) (pleft_inv ftop)
(pleft_inv fbot) (pleft_inv fbot)
(psquare_hcompose psq (psquare_inv_top_bot psq)) (psquare_hcompose psq (psquare_inv_top_bot psq))
(psquare_of_pid_top_bot phomotopy.rfl) := (psquare_of_pid_top_bot phomotopy.rfl) :=
begin begin
refine ptube_v_phtpy_bot _ _, refine ptube_v_phtpy_bot _ _,

View file

@ -210,8 +210,8 @@ end
open option open option
definition is_strunc_add_point_spectrum {X : Type} {Y : X → spectrum} {s₀ : } definition is_strunc_add_point_spectrum {X : Type} {Y : X → spectrum} {s₀ : }
(H : Πx, is_strunc s₀ (Y x)) : Π(x : X₊), is_strunc s₀ (add_point_spectrum Y x) (H : Πx, is_strunc s₀ (Y x)) : Π(x : X₊), is_strunc s₀ (add_point_spectrum Y x)
| (some x) := H x | (some x) := proof H x qed
| none := is_strunc_sunit s₀ | none := begin intro k, apply is_trunc_lift, apply is_trunc_unit end
definition is_strunc_EM_spectrum (G : AbGroup) definition is_strunc_EM_spectrum (G : AbGroup)
: is_strunc 0 (EM_spectrum G) := : is_strunc 0 (EM_spectrum G) :=

View file

@ -231,6 +231,11 @@ namespace pointed
| (some a) := B a | (some a) := B a
| none := plift punit | none := plift punit
definition add_point_over_pequiv {A : Type} {B B' : A → Type*} (e : Πa, B a ≃* B' a) :
Π(a : A₊), add_point_over B a ≃* add_point_over B' a
| (some a) := e a
| none := pequiv.rfl
definition phomotopy_group_plift_punit.{u} (n : ) [H : is_at_least_two n] : definition phomotopy_group_plift_punit.{u} (n : ) [H : is_at_least_two n] :
πag[n] (plift.{0 u} punit) ≃g trivial_ab_group_lift.{u} := πag[n] (plift.{0 u} punit) ≃g trivial_ab_group_lift.{u} :=
begin begin