Merge branch 'master' of https://github.com/cmu-phil/Spectral
This commit is contained in:
commit
5ac3ce7058
4 changed files with 39 additions and 30 deletions
|
@ -90,7 +90,12 @@ end
|
|||
|
||||
definition cohomology_isomorphism_shomotopy_group_sp_cotensor (X : Type*) (Y : spectrum) {n m : ℤ}
|
||||
(p : -m = n) : H^n[X, Y] ≃g πₛ[m] (sp_cotensor X Y) :=
|
||||
sorry /- TODO FOR SSS -/
|
||||
begin
|
||||
refine !trunc_ppi_isomorphic_pmap⁻¹ᵍ ⬝g _,
|
||||
refine parametrized_cohomology_isomorphism_shomotopy_group_spi (λx, Y) p ⬝g _,
|
||||
apply shomotopy_group_isomorphism_of_pequiv, intro k,
|
||||
apply pppi_pequiv_ppmap
|
||||
end
|
||||
|
||||
definition unreduced_cohomology_isomorphism_shomotopy_group_sp_ucotensor (X : Type) (Y : spectrum)
|
||||
{n m : ℤ} (p : -m = n) : uH^n[X, Y] ≃g πₛ[m] (sp_ucotensor X Y) :=
|
||||
|
@ -99,8 +104,6 @@ begin
|
|||
apply shomotopy_group_isomorphism_of_pequiv, intro k, apply ppmap_add_point
|
||||
end
|
||||
|
||||
|
||||
|
||||
/- functoriality -/
|
||||
|
||||
definition cohomology_functor [constructor] {X X' : Type*} (f : X' →* X) (Y : spectrum)
|
||||
|
@ -138,23 +141,24 @@ definition cohomology_isomorphism_refl (X : Type*) (Y : spectrum) (n : ℤ) (x :
|
|||
|
||||
definition cohomology_isomorphism_right (X : Type*) {Y Y' : spectrum} (e : Πn, Y n ≃* Y' n)
|
||||
(n : ℤ) : H^n[X, Y] ≃g H^n[X, Y'] :=
|
||||
sorry /- TODO FOR SSS -/
|
||||
cohomology_isomorphism_shomotopy_group_sp_cotensor X Y !neg_neg ⬝g
|
||||
shomotopy_group_isomorphism_of_pequiv (-n) (λk, pequiv_ppcompose_left (e k)) ⬝g
|
||||
(cohomology_isomorphism_shomotopy_group_sp_cotensor X Y' !neg_neg)⁻¹ᵍ
|
||||
|
||||
definition parametrized_cohomology_isomorphism_right {X : Type*} {Y Y' : X → spectrum}
|
||||
(e : Πx n, Y x n ≃* Y' x n) (n : ℤ) : pH^n[(x : X), Y x] ≃g pH^n[(x : X), Y' x] :=
|
||||
parametrized_cohomology_isomorphism_shomotopy_group_spi Y !neg_neg ⬝g
|
||||
shomotopy_group_isomorphism_of_pequiv (-n) (λk, ppi_pequiv_right sorry) ⬝g
|
||||
shomotopy_group_isomorphism_of_pequiv (-n) (λk, ppi_pequiv_right (λx, e x k)) ⬝g
|
||||
(parametrized_cohomology_isomorphism_shomotopy_group_spi Y' !neg_neg)⁻¹ᵍ
|
||||
--sorry /- TODO FOR SSS -/
|
||||
|
||||
definition unreduced_parametrized_cohomology_isomorphism_right {X : Type} {Y Y' : X → spectrum}
|
||||
(e : Πx n, Y x n ≃* Y' x n) (n : ℤ) : upH^n[(x : X), Y x] ≃g upH^n[(x : X), Y' x] :=
|
||||
sorry /- TODO FOR SSS -/
|
||||
parametrized_cohomology_isomorphism_right (λx' k, add_point_over_pequiv (λx, e x k) x') n
|
||||
|
||||
definition unreduced_ordinary_parametrized_cohomology_isomorphism_right {X : Type}
|
||||
{G G' : X → AbGroup} (e : Πx, G x ≃g G' x) (n : ℤ) :
|
||||
uopH^n[(x : X), G x] ≃g uopH^n[(x : X), G' x] :=
|
||||
sorry /- TODO FOR SSS -/
|
||||
unreduced_parametrized_cohomology_isomorphism_right (λx, EM_spectrum_pequiv (e x)) n
|
||||
|
||||
definition ordinary_cohomology_isomorphism_right (X : Type*) {G G' : AbGroup} (e : G ≃g G')
|
||||
(n : ℤ) : oH^n[X, G] ≃g oH^n[X, G'] :=
|
||||
|
|
|
@ -5,8 +5,8 @@ Authors: Egbert Rijke
|
|||
|
||||
-/
|
||||
|
||||
/-
|
||||
The goal of this file is to extend the library of pointed types and pointed maps to support the library of prespectra
|
||||
/-
|
||||
The goal of this file is to extend the library of pointed types and pointed maps to support the library of prespectra
|
||||
|
||||
-/
|
||||
|
||||
|
@ -37,14 +37,14 @@ end
|
|||
definition psquare_of_pid_top_bot {A B : Type*} {fleft : A →* B} {fright : A →* B} (phtpy : fright ~* fleft) : psquare (pid A) (pid B) fleft fright :=
|
||||
psquare_of_phomotopy ((pcompose_pid fright) ⬝* phtpy ⬝* (pid_pcompose fleft)⁻¹*)
|
||||
|
||||
print psquare_of_pid_top_bot
|
||||
--print psquare_of_pid_top_bot
|
||||
|
||||
--λ phtpy, psquare_of_phomotopy ((pid_pcompose fleft) ⬝* phtpy ⬝* ((pcompose_pid fright)⁻¹*))
|
||||
|
||||
definition psquare_of_pid_left_right {A B : Type*} {ftop : A →* B} {fbot : A →* B} (phtpy : ftop ~* fbot) : psquare ftop fbot (pid A) (pid B) :=
|
||||
psquare_of_phomotopy ((pid_pcompose ftop) ⬝* phtpy ⬝* ((pcompose_pid fbot)⁻¹*))
|
||||
|
||||
print psquare_of_pid_left_right
|
||||
--print psquare_of_pid_left_right
|
||||
|
||||
definition psquare_hcompose {A B C D E F : Type*} {ftop : A →* B} {fbot : D →* E} {fleft : A →* D} {fright : B →* E} {gtop : B →* C} {gbot : E →* F} {gright : C →* F} (psq_left : psquare ftop fbot fleft fright) (psq_right : psquare gtop gbot fright gright) : psquare (gtop ∘* ftop) (gbot ∘* fbot) fleft gright :=
|
||||
begin
|
||||
|
@ -100,7 +100,7 @@ phsquare (pwhisker_left fright phtpy_top) (pwhisker_right fleft phtpy_bot) psq_b
|
|||
definition ptube_h {A B C D : Type*} {ftop : A →* B} {fbot : C →* D} {fleft fleft' : A →* C} (phtpy_left : fleft ~* fleft') {fright fright' : B →* D} (phtpy_right : fright ~* fright') (psq_back : psquare ftop fbot fleft fright) (psq_front : psquare ftop fbot fleft' fright') : Type :=
|
||||
phsquare (pwhisker_right ftop phtpy_right) (pwhisker_left fbot phtpy_left) psq_back psq_front
|
||||
|
||||
print pinv_right_phomotopy_of_phomotopy
|
||||
--print pinv_right_phomotopy_of_phomotopy
|
||||
|
||||
definition psquare_inv_top_bot {A B C D : Type*} {ftop : A ≃* B} {fbot : C ≃* D} {fleft : A →* C} {fright : B →* D} (psq : psquare ftop fbot fleft fright) : psquare ftop⁻¹ᵉ* fbot⁻¹ᵉ* fright fleft :=
|
||||
begin
|
||||
|
@ -114,25 +114,25 @@ end
|
|||
definition p2homotopy_ty_respect_pt {A B : Type*} {f g : A →* B} {H K : f ~* g} (htpy : H ~ K) : Type :=
|
||||
begin
|
||||
induction H with H p, exact p
|
||||
end = whisker_right (respect_pt g) (htpy pt) ⬝
|
||||
end = whisker_right (respect_pt g) (htpy pt) ⬝
|
||||
begin
|
||||
induction K with K q, exact q
|
||||
end
|
||||
|
||||
print p2homotopy_ty_respect_pt
|
||||
--print p2homotopy_ty_respect_pt
|
||||
|
||||
structure p2homotopy {A B : Type*} {f g : A →* B} (H K : f ~* g) : Type :=
|
||||
( to_2htpy : H ~ K)
|
||||
( respect_pt : p2homotopy_ty_respect_pt to_2htpy)
|
||||
|
||||
definition ptube_v_phtpy_bot {A B C D : Type*}
|
||||
{ftop ftop' : A →* B} {phtpy_top : ftop ~* ftop'}
|
||||
definition ptube_v_phtpy_bot {A B C D : Type*}
|
||||
{ftop ftop' : A →* B} {phtpy_top : ftop ~* ftop'}
|
||||
{fbot fbot' : C →* D} {phtpy_bot phtpy_bot' : fbot ~* fbot'} (ppi_htpy_bot : phtpy_bot ~~* phtpy_bot')
|
||||
{fleft : A →* C} {fright : B →* D}
|
||||
{psq_back : psquare ftop fbot fleft fright}
|
||||
{psq_front : psquare ftop' fbot' fleft fright}
|
||||
(ptb : ptube_v phtpy_top phtpy_bot psq_back psq_front)
|
||||
: ptube_v phtpy_top phtpy_bot' psq_back psq_front
|
||||
{fleft : A →* C} {fright : B →* D}
|
||||
{psq_back : psquare ftop fbot fleft fright}
|
||||
{psq_front : psquare ftop' fbot' fleft fright}
|
||||
(ptb : ptube_v phtpy_top phtpy_bot psq_back psq_front)
|
||||
: ptube_v phtpy_top phtpy_bot' psq_back psq_front
|
||||
:=
|
||||
begin
|
||||
induction ppi_htpy_bot using ppi_homotopy_rec_on_idp,
|
||||
|
@ -146,12 +146,12 @@ begin
|
|||
exact id,
|
||||
end
|
||||
|
||||
definition ptube_v_left_inv {A B C D : Type*} {ftop : A ≃* B} {fbot : C ≃* D} {fleft : A →* C} {fright : B →* D}
|
||||
(psq : psquare ftop fbot fleft fright) :
|
||||
ptube_v
|
||||
(pleft_inv ftop)
|
||||
(pleft_inv fbot)
|
||||
(psquare_hcompose psq (psquare_inv_top_bot psq))
|
||||
definition ptube_v_left_inv {A B C D : Type*} {ftop : A ≃* B} {fbot : C ≃* D} {fleft : A →* C} {fright : B →* D}
|
||||
(psq : psquare ftop fbot fleft fright) :
|
||||
ptube_v
|
||||
(pleft_inv ftop)
|
||||
(pleft_inv fbot)
|
||||
(psquare_hcompose psq (psquare_inv_top_bot psq))
|
||||
(psquare_of_pid_top_bot phomotopy.rfl) :=
|
||||
begin
|
||||
refine ptube_v_phtpy_bot _ _,
|
||||
|
|
|
@ -210,8 +210,8 @@ end
|
|||
open option
|
||||
definition is_strunc_add_point_spectrum {X : Type} {Y : X → spectrum} {s₀ : ℤ}
|
||||
(H : Πx, is_strunc s₀ (Y x)) : Π(x : X₊), is_strunc s₀ (add_point_spectrum Y x)
|
||||
| (some x) := H x
|
||||
| none := is_strunc_sunit s₀
|
||||
| (some x) := proof H x qed
|
||||
| none := begin intro k, apply is_trunc_lift, apply is_trunc_unit end
|
||||
|
||||
definition is_strunc_EM_spectrum (G : AbGroup)
|
||||
: is_strunc 0 (EM_spectrum G) :=
|
||||
|
|
|
@ -231,6 +231,11 @@ namespace pointed
|
|||
| (some a) := B a
|
||||
| none := plift punit
|
||||
|
||||
definition add_point_over_pequiv {A : Type} {B B' : A → Type*} (e : Πa, B a ≃* B' a) :
|
||||
Π(a : A₊), add_point_over B a ≃* add_point_over B' a
|
||||
| (some a) := e a
|
||||
| none := pequiv.rfl
|
||||
|
||||
definition phomotopy_group_plift_punit.{u} (n : ℕ) [H : is_at_least_two n] :
|
||||
πag[n] (plift.{0 u} punit) ≃g trivial_ab_group_lift.{u} :=
|
||||
begin
|
||||
|
|
Loading…
Reference in a new issue