a lemma for spectrification
This commit is contained in:
parent
bf8f77a9e5
commit
5afbc4afdd
1 changed files with 16 additions and 2 deletions
18
colim.hlean
18
colim.hlean
|
@ -13,7 +13,7 @@ namespace seq_colim
|
|||
begin
|
||||
induction n with n p,
|
||||
reflexivity,
|
||||
exact (ap (sι f) (respect_pt _))⁻¹ᵖ ⬝ !glue ⬝ p
|
||||
exact (ap (sι f) (respect_pt _))⁻¹ᵖ ⬝ (!glue ⬝ p)
|
||||
end
|
||||
|
||||
definition pinclusion [constructor] {X : ℕ → Type*} (f : Πn, X n →* X (n+1)) (n : ℕ)
|
||||
|
@ -251,7 +251,21 @@ namespace seq_colim
|
|||
|
||||
definition pshift_equiv_pinclusion {A : ℕ → Type*} (f : Πn, A n →* A (succ n)) (n : ℕ) :
|
||||
psquare (pinclusion f n) (pinclusion (λn, f (n+1)) n) (f n) (pshift_equiv f) :=
|
||||
phomotopy.mk homotopy.rfl begin refine !idp_con ⬝ _, esimp, exact sorry end
|
||||
phomotopy.mk homotopy.rfl begin
|
||||
refine !idp_con ⬝ _, esimp,
|
||||
induction n with n IH,
|
||||
{ esimp[inclusion_pt], esimp[shift_diag], exact !idp_con⁻¹ },
|
||||
{ esimp[inclusion_pt], refine !con_inv_cancel_left ⬝ _,
|
||||
rewrite ap_con, rewrite ap_con,
|
||||
refine _ ⬝ whisker_right _ !con.assoc,
|
||||
refine _ ⬝ (con.assoc (_ ⬝ _) _ _)⁻¹,
|
||||
xrewrite [-IH],
|
||||
esimp[shift_up], rewrite [elim_glue, ap_inv, -ap_compose'], esimp,
|
||||
rewrite [-+con.assoc], apply whisker_right,
|
||||
rewrite con.assoc, apply !eq_inv_con_of_con_eq,
|
||||
symmetry, exact eq_of_square !natural_square
|
||||
}
|
||||
end
|
||||
|
||||
section functor
|
||||
variable {f}
|
||||
|
|
Loading…
Reference in a new issue