a lemma for spectrification

This commit is contained in:
spiceghello 2017-06-06 17:52:30 -06:00
parent bf8f77a9e5
commit 5afbc4afdd

View file

@ -13,7 +13,7 @@ namespace seq_colim
begin
induction n with n p,
reflexivity,
exact (ap (sι f) (respect_pt _))⁻¹ᵖ ⬝ !glue ⬝ p
exact (ap (sι f) (respect_pt _))⁻¹ᵖ ⬝ (!glue ⬝ p)
end
definition pinclusion [constructor] {X : → Type*} (f : Πn, X n →* X (n+1)) (n : )
@ -251,7 +251,21 @@ namespace seq_colim
definition pshift_equiv_pinclusion {A : → Type*} (f : Πn, A n →* A (succ n)) (n : ) :
psquare (pinclusion f n) (pinclusion (λn, f (n+1)) n) (f n) (pshift_equiv f) :=
phomotopy.mk homotopy.rfl begin refine !idp_con ⬝ _, esimp, exact sorry end
phomotopy.mk homotopy.rfl begin
refine !idp_con ⬝ _, esimp,
induction n with n IH,
{ esimp[inclusion_pt], esimp[shift_diag], exact !idp_con⁻¹ },
{ esimp[inclusion_pt], refine !con_inv_cancel_left ⬝ _,
rewrite ap_con, rewrite ap_con,
refine _ ⬝ whisker_right _ !con.assoc,
refine _ ⬝ (con.assoc (_ ⬝ _) _ _)⁻¹,
xrewrite [-IH],
esimp[shift_up], rewrite [elim_glue, ap_inv, -ap_compose'], esimp,
rewrite [-+con.assoc], apply whisker_right,
rewrite con.assoc, apply !eq_inv_con_of_con_eq,
symmetry, exact eq_of_square !natural_square
}
end
section functor
variable {f}