checkpoint for direct sum of graded modules
This commit is contained in:
parent
200885ad21
commit
5bb2c7859d
7 changed files with 223 additions and 18 deletions
|
@ -20,14 +20,14 @@ namespace group
|
|||
section
|
||||
|
||||
parameters {I : Set} (Y : I → AbGroup)
|
||||
variables {A' : AbGroup}
|
||||
variables {A' : AbGroup} {Y' : I → AbGroup}
|
||||
|
||||
definition dirsum_carrier : AbGroup := free_ab_group (trunctype.mk (Σi, Y i) _)
|
||||
local abbreviation ι [constructor] := @free_ab_group_inclusion
|
||||
inductive dirsum_rel : dirsum_carrier → Type :=
|
||||
| rmk : Πi y₁ y₂, dirsum_rel (ι ⟨i, y₁⟩ * ι ⟨i, y₂⟩ * (ι ⟨i, y₁ * y₂⟩)⁻¹)
|
||||
|
||||
definition dirsum : AbGroup := quotient_ab_group_gen dirsum_carrier (λg, ∥dirsum_rel g∥)
|
||||
definition dirsum : AddAbGroup := quotient_ab_group_gen dirsum_carrier (λg, ∥dirsum_rel g∥)
|
||||
|
||||
-- definition dirsum_carrier_incl [constructor] (i : I) : Y i →g dirsum_carrier :=
|
||||
|
||||
|
@ -35,6 +35,38 @@ namespace group
|
|||
homomorphism.mk (λy, class_of (ι ⟨i, y⟩))
|
||||
begin intro g h, symmetry, apply gqg_eq_of_rel, apply tr, apply dirsum_rel.rmk end
|
||||
|
||||
parameter {Y}
|
||||
definition dirsum.rec {P : dirsum → Type} [H : Πg, is_prop (P g)]
|
||||
(h₁ : Πi (y : Y i), P (dirsum_incl i y)) (h₂ : P 1) (h₃ : Πg h, P g → P h → P (g * h)) :
|
||||
Πg, P g :=
|
||||
begin
|
||||
refine @set_quotient.rec_prop _ _ _ H _,
|
||||
refine @set_quotient.rec_prop _ _ _ (λx, !H) _,
|
||||
esimp, intro l, induction l with s l ih,
|
||||
exact h₂,
|
||||
induction s with v v,
|
||||
induction v with i y,
|
||||
exact h₃ _ _ (h₁ i y) ih,
|
||||
induction v with i y,
|
||||
refine h₃ (gqg_map _ _ (class_of [inr ⟨i, y⟩])) _ _ ih,
|
||||
refine transport P _ (h₁ i y⁻¹),
|
||||
refine _ ⬝ !one_mul,
|
||||
refine _ ⬝ ap (λx, mul x _) (to_respect_one (dirsum_incl i)),
|
||||
apply gqg_eq_of_rel',
|
||||
apply tr, esimp,
|
||||
refine transport dirsum_rel _ (dirsum_rel.rmk i y⁻¹ y),
|
||||
rewrite [mul.left_inv, mul.assoc],
|
||||
end
|
||||
|
||||
definition dirsum_homotopy {φ ψ : dirsum →g A'}
|
||||
(h : Πi (y : Y i), φ (dirsum_incl i y) = ψ (dirsum_incl i y)) : φ ~ ψ :=
|
||||
begin
|
||||
refine dirsum.rec _ _ _,
|
||||
exact h,
|
||||
refine !respect_one ⬝ !respect_one⁻¹,
|
||||
intro g₁ g₂ h₁ h₂, rewrite [+ to_respect_mul, h₁, h₂]
|
||||
end
|
||||
|
||||
definition dirsum_elim_resp_quotient (f : Πi, Y i →g A') (g : dirsum_carrier)
|
||||
(r : ∥dirsum_rel g∥) : free_ab_group_elim (λv, f v.1 v.2) g = 1 :=
|
||||
begin
|
||||
|
@ -60,7 +92,44 @@ namespace group
|
|||
intro x, induction x with i y, exact H i y
|
||||
end
|
||||
|
||||
|
||||
end
|
||||
|
||||
variables {I J : Set} {Y Y' Y'' : I → AddAbGroup}
|
||||
|
||||
definition dirsum_functor [constructor] (f : Πi, Y i →g Y' i) : dirsum Y →g dirsum Y' :=
|
||||
dirsum_elim (λi, dirsum_incl Y' i ∘g f i)
|
||||
|
||||
theorem dirsum_functor_compose (f' : Πi, Y' i →g Y'' i) (f : Πi, Y i →g Y' i) :
|
||||
dirsum_functor f' ∘g dirsum_functor f ~ dirsum_functor (λi, f' i ∘g f i) :=
|
||||
begin
|
||||
apply dirsum_homotopy,
|
||||
intro i y, reflexivity,
|
||||
end
|
||||
|
||||
variable (Y)
|
||||
definition dirsum_functor_gid : dirsum_functor (λi, gid (Y i)) ~ gid (dirsum Y) :=
|
||||
begin
|
||||
apply dirsum_homotopy,
|
||||
intro i y, reflexivity,
|
||||
end
|
||||
variable {Y}
|
||||
|
||||
definition dirsum_functor_add (f f' : Πi, Y i →g Y' i) :
|
||||
homomorphism_add (dirsum_functor f) (dirsum_functor f') ~
|
||||
dirsum_functor (λi, homomorphism_add (f i) (f' i)) :=
|
||||
begin
|
||||
apply dirsum_homotopy,
|
||||
intro i y, exact sorry
|
||||
end
|
||||
|
||||
definition dirsum_functor_homotopy {f f' : Πi, Y i →g Y' i} (p : f ~2 f') :
|
||||
dirsum_functor f ~ dirsum_functor f' :=
|
||||
begin
|
||||
apply dirsum_homotopy,
|
||||
intro i y, exact sorry
|
||||
end
|
||||
|
||||
definition dirsum_functor_left [constructor] (f : J → I) : dirsum (Y ∘ f) →g dirsum Y :=
|
||||
dirsum_elim (λj, dirsum_incl Y (f j))
|
||||
|
||||
end group
|
||||
|
|
|
@ -8,13 +8,14 @@ Constructions with groups
|
|||
|
||||
import algebra.group_theory hit.set_quotient types.list types.sum .free_group
|
||||
|
||||
open eq algebra is_trunc set_quotient relation sigma sigma.ops prod sum list trunc function equiv
|
||||
open eq algebra is_trunc set_quotient relation sigma sigma.ops prod sum list trunc function equiv trunc_index
|
||||
group
|
||||
|
||||
namespace group
|
||||
|
||||
variables {G G' : Group} {g g' h h' k : G} {A B : AbGroup}
|
||||
|
||||
variables (X : Set) {l l' : list (X ⊎ X)}
|
||||
variables (X : Set) {Y : Set} {l l' : list (X ⊎ X)}
|
||||
|
||||
/- Free Abelian Group of a set -/
|
||||
namespace free_ab_group
|
||||
|
@ -197,4 +198,36 @@ namespace group
|
|||
reflexivity }
|
||||
end
|
||||
|
||||
definition free_ab_group_functor (f : X → Y) : free_ab_group X →g free_ab_group Y :=
|
||||
free_ab_group_elim (free_ab_group_inclusion ∘ f)
|
||||
|
||||
-- set_option pp.all true
|
||||
-- definition free_ab_group.rec {P : free_ab_group X → Type} [H : Πg, is_prop (P g)]
|
||||
-- (h₁ : Πx, P (free_ab_group_inclusion x))
|
||||
-- (h₂ : P 0)
|
||||
-- (h₃ : Πg h, P g → P h → P (g * h))
|
||||
-- (h₄ : Πg, P g → P g⁻¹) :
|
||||
-- Πg, P g :=
|
||||
-- begin
|
||||
-- refine @set_quotient.rec_prop _ _ _ H _,
|
||||
-- refine @set_quotient.rec_prop _ _ _ (λx, !H) _,
|
||||
-- esimp, intro l, induction l with s l ih,
|
||||
-- exact h₂,
|
||||
-- induction s with v v,
|
||||
-- induction v with i y,
|
||||
-- exact h₃ _ _ (h₁ i y) ih,
|
||||
-- induction v with i y,
|
||||
-- refine h₃ (gqg_map _ _ (class_of [inr ⟨i, y⟩])) _ _ ih,
|
||||
-- refine transport P _ (h₁ i y⁻¹),
|
||||
-- refine _ ⬝ !mul_one,
|
||||
-- refine _ ⬝ ap (mul _) (to_respect_one (dirsum_incl i)),
|
||||
-- apply gqg_eq_of_rel',
|
||||
-- apply tr, esimp,
|
||||
-- refine transport dirsum_rel _ (dirsum_rel.rmk i y⁻¹ y),
|
||||
-- rewrite [mul.left_inv, mul.assoc],
|
||||
-- apply ap (mul _),
|
||||
-- refine _ ⬝ (mul_inv (class_of [inr ⟨i, y⟩]) (ι ⟨i, 1⟩))⁻¹ᵖ,
|
||||
-- refine ap011 mul _ _,
|
||||
-- end
|
||||
|
||||
end group
|
||||
|
|
|
@ -2,14 +2,14 @@
|
|||
|
||||
-- Author: Floris van Doorn
|
||||
|
||||
import .left_module
|
||||
import .left_module .direct_sum
|
||||
|
||||
open algebra eq left_module pointed function equiv is_equiv is_trunc prod
|
||||
open algebra eq left_module pointed function equiv is_equiv is_trunc prod group
|
||||
|
||||
namespace left_module
|
||||
|
||||
definition graded (str : Type) (I : Type) : Type := I → str
|
||||
definition graded_module (R : Ring) : Type → Type := graded (LeftModule R)
|
||||
definition graded [reducible] (str : Type) (I : Type) : Type := I → str
|
||||
definition graded_module [reducible] (R : Ring) : Type → Type := graded (LeftModule R)
|
||||
|
||||
variables {R : Ring} {I : Type} {M M₁ M₂ M₃ : graded_module R I}
|
||||
|
||||
|
@ -149,6 +149,41 @@ definition graded_hom_of_eq [constructor] {M₁ M₂ : graded_module R I} (p : M
|
|||
: M₁ →gm M₂ :=
|
||||
graded_iso_of_eq p
|
||||
|
||||
/- direct sum of graded R-modules -/
|
||||
|
||||
variables {J : Set} (N : graded_module R J)
|
||||
definition dirsum' : AddAbGroup :=
|
||||
group.dirsum (λj, AddAbGroup_of_LeftModule (N j))
|
||||
variable {N}
|
||||
definition dirsum_smul [constructor] (r : R) : dirsum' N →g dirsum' N :=
|
||||
dirsum_functor (λi, smul_homomorphism (N i) r)
|
||||
|
||||
definition dirsum_smul_right_distrib (r s : R) (n : dirsum' N) :
|
||||
dirsum_smul (r + s) n = dirsum_smul r n + dirsum_smul s n :=
|
||||
begin
|
||||
refine dirsum_functor_homotopy _ n ⬝ !dirsum_functor_add⁻¹,
|
||||
intro i ni, exact to_smul_right_distrib r s ni
|
||||
end
|
||||
|
||||
definition dirsum_mul_smul (r s : R) (n : dirsum' N) :
|
||||
dirsum_smul (r * s) n = dirsum_smul r (dirsum_smul s n) :=
|
||||
begin
|
||||
refine dirsum_functor_homotopy _ n ⬝ !dirsum_functor_compose⁻¹,
|
||||
intro i ni, exact to_mul_smul r s ni
|
||||
end
|
||||
|
||||
definition dirsum_one_smul (n : dirsum' N) : dirsum_smul 1 n = n :=
|
||||
begin
|
||||
refine dirsum_functor_homotopy _ n ⬝ !dirsum_functor_gid,
|
||||
intro i ni, exact to_one_smul ni
|
||||
end
|
||||
|
||||
definition dirsum : LeftModule R :=
|
||||
LeftModule_of_AddAbGroup (dirsum' N) (λr n, dirsum_smul r n) (λr, homomorphism.addstruct (dirsum_smul r))
|
||||
dirsum_smul_right_distrib
|
||||
dirsum_mul_smul
|
||||
dirsum_one_smul
|
||||
|
||||
/- exact couples -/
|
||||
|
||||
definition is_exact_gmod (f : M₁ →gm M₂) (f' : M₂ →gm M₃) : Type :=
|
||||
|
|
|
@ -8,7 +8,7 @@ Modules prod vector spaces over a ring.
|
|||
(We use "left_module," which is more precise, because "module" is a keyword.)
|
||||
-/
|
||||
import algebra.field ..move_to_lib
|
||||
open is_trunc pointed function sigma eq algebra prod is_equiv equiv
|
||||
open is_trunc pointed function sigma eq algebra prod is_equiv equiv group
|
||||
|
||||
structure has_scalar [class] (F V : Type) :=
|
||||
(smul : F → V → V)
|
||||
|
@ -80,6 +80,7 @@ section left_module
|
|||
|
||||
proposition sub_smul_right_distrib (a b : R) (v : M) : (a - b) • v = a • v - b • v :=
|
||||
by rewrite [sub_eq_add_neg, smul_right_distrib, neg_smul]
|
||||
|
||||
end left_module
|
||||
|
||||
/- vector spaces -/
|
||||
|
@ -145,18 +146,56 @@ end module_hom
|
|||
structure LeftModule (R : Ring) :=
|
||||
(carrier : Type) (struct : left_module R carrier)
|
||||
|
||||
local attribute LeftModule.carrier [coercion]
|
||||
attribute LeftModule.carrier [coercion]
|
||||
attribute LeftModule.struct [instance]
|
||||
|
||||
definition pointed_LeftModule_carrier [instance] {R : Ring} (M : LeftModule R) :
|
||||
pointed (LeftModule.carrier M) :=
|
||||
pointed.mk zero
|
||||
|
||||
definition pSet_of_LeftModule [coercion] {R : Ring} (M : LeftModule R) : Set* :=
|
||||
definition pSet_of_LeftModule {R : Ring} (M : LeftModule R) : Set* :=
|
||||
pSet.mk' (LeftModule.carrier M)
|
||||
|
||||
definition AddAbGroup_of_LeftModule [coercion] {R : Ring} (M : LeftModule R) : AddAbGroup :=
|
||||
AddAbGroup.mk M _
|
||||
|
||||
definition left_module_AddAbGroup_of_LeftModule [instance] {R : Ring} (M : LeftModule R) :
|
||||
left_module R (AddAbGroup_of_LeftModule M) :=
|
||||
LeftModule.struct M
|
||||
|
||||
definition left_module_of_ab_group (G : Type) [gG : add_ab_group G] (R : Type) [ring R]
|
||||
(smul : R → G → G)
|
||||
(h1 : Π (r : R) (x y : G), smul r (x + y) = (smul r x + smul r y))
|
||||
(h2 : Π (r s : R) (x : G), smul (r + s) x = (smul r x + smul s x))
|
||||
(h3 : Π r s x, smul (r * s) x = smul r (smul s x))
|
||||
(h4 : Π x, smul 1 x = x) : left_module R G :=
|
||||
begin
|
||||
cases gG with Gs Gm Gh1 G1 Gh2 Gh3 Gi Gh4 Gh5,
|
||||
exact left_module.mk smul Gs Gm Gh1 G1 Gh2 Gh3 Gi Gh4 Gh5 h1 h2 h3 h4
|
||||
end
|
||||
|
||||
definition LeftModule_of_AddAbGroup {R : Ring} (G : AddAbGroup) (smul : R → G → G)
|
||||
(h1 h2 h3 h4) : LeftModule R :=
|
||||
LeftModule.mk G (left_module_of_ab_group G R smul h1 h2 h3 h4)
|
||||
|
||||
|
||||
section
|
||||
variable {R : Ring}
|
||||
variables {R : Ring} {M M₁ M₂ M₃ : LeftModule R}
|
||||
|
||||
definition smul_homomorphism [constructor] (M : LeftModule R) (r : R) :
|
||||
AddAbGroup_of_LeftModule M →g AddAbGroup_of_LeftModule M :=
|
||||
add_homomorphism.mk (λg, r • g) (smul_left_distrib r)
|
||||
|
||||
proposition to_smul_left_distrib (a : R) (u v : M) : a • (u + v) = a • u + a • v :=
|
||||
!smul_left_distrib
|
||||
|
||||
proposition to_smul_right_distrib (a b : R) (u : M) : (a + b) • u = a • u + b • u :=
|
||||
!smul_right_distrib
|
||||
|
||||
proposition to_mul_smul (a : R) (b : R) (u : M) : (a * b) • u = a • (b • u) :=
|
||||
!mul_smul
|
||||
|
||||
proposition to_one_smul (u : M) : (1 : R) • u = u := !one_smul
|
||||
|
||||
structure homomorphism (M₁ M₂ : LeftModule R) : Type :=
|
||||
(fn : LeftModule.carrier M₁ → LeftModule.carrier M₂)
|
||||
|
@ -171,7 +210,8 @@ section
|
|||
homomorphism.p φ
|
||||
|
||||
section
|
||||
variables {M₁ M₂ : LeftModule R} (φ : M₁ →lm M₂)
|
||||
|
||||
variable (φ : M₁ →lm M₂)
|
||||
|
||||
definition to_respect_add (x y : M₁) : φ (x + y) = φ x + φ y :=
|
||||
respect_add φ x y
|
||||
|
@ -220,7 +260,6 @@ section
|
|||
end
|
||||
|
||||
section
|
||||
variables {M M₁ M₂ M₃ : LeftModule R}
|
||||
|
||||
definition LeftModule.struct2 [instance] (M : LeftModule R) : left_module R M :=
|
||||
LeftModule.struct M
|
||||
|
@ -256,8 +295,11 @@ end
|
|||
definition equiv_of_isomorphism [constructor] (φ : M₁ ≃lm M₂) : M₁ ≃ M₂ :=
|
||||
equiv.mk φ !isomorphism.is_equiv_to_hom
|
||||
|
||||
section
|
||||
local attribute pSet_of_LeftModule [coercion]
|
||||
definition pequiv_of_isomorphism [constructor] (φ : M₁ ≃lm M₂) : M₁ ≃* M₂ :=
|
||||
pequiv_of_equiv (equiv_of_isomorphism φ) (to_respect_zero φ)
|
||||
end
|
||||
|
||||
definition isomorphism_of_equiv [constructor] (φ : M₁ ≃ M₂)
|
||||
(p : Π(g₁ g₂ : M₁), φ (g₁ + g₂) = φ g₁ + φ g₂)
|
||||
|
@ -320,8 +362,11 @@ end
|
|||
: M₁ →lm M₂ :=
|
||||
isomorphism_of_eq p
|
||||
|
||||
section
|
||||
local attribute pSet_of_LeftModule [coercion]
|
||||
definition is_exact_mod (f : M₁ →lm M₂) (f' : M₂ →lm M₃) : Type :=
|
||||
@is_exact M₁ M₂ M₃ (homomorphism_fn f) (homomorphism_fn f')
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
|
|
|
@ -10,7 +10,7 @@ open left_module
|
|||
|
||||
structure module_chain_complex (R : Ring) (N : succ_str) : Type :=
|
||||
(mod : N → LeftModule R)
|
||||
(hom : Π (n : N), left_module.homomorphism (mod (S n)) (mod n))
|
||||
(hom : Π (n : N), mod (S n) →lm mod n)
|
||||
(is_chain_complex :
|
||||
Π (n : N) (x : mod (S (S n))), hom n (hom (S n) x) = 0)
|
||||
|
||||
|
|
|
@ -13,6 +13,7 @@ open eq algebra is_trunc set_quotient relation sigma sigma.ops prod trunc functi
|
|||
namespace group
|
||||
|
||||
variables {G G' : Group} (H : subgroup_rel G) (N : normal_subgroup_rel G) {g g' h h' k : G}
|
||||
{N' : normal_subgroup_rel G'}
|
||||
variables {A B : AbGroup}
|
||||
|
||||
/- Quotient Group -/
|
||||
|
@ -195,7 +196,7 @@ namespace group
|
|||
apply rel_of_eq _ H
|
||||
end
|
||||
|
||||
definition rel_of_ab_qg_map_eq_one {K : subgroup_rel A} (a :A) (H : ab_qg_map K a = 1) : K a :=
|
||||
definition rel_of_ab_qg_map_eq_one {K : subgroup_rel A} (a :A) (H : ab_qg_map K a = 1) : K a :=
|
||||
begin
|
||||
have e : (a * 1⁻¹ = a),
|
||||
from calc
|
||||
|
@ -268,6 +269,14 @@ namespace group
|
|||
exact H
|
||||
end
|
||||
|
||||
definition quotient_group_functor [constructor] (φ : G →g G') (h : Πg, N g → N' (φ g)) :
|
||||
quotient_group N →g quotient_group N' :=
|
||||
begin
|
||||
apply quotient_group_elim (qg_map N' ∘g φ),
|
||||
intro g Ng, esimp,
|
||||
refine qg_map_eq_one (φ g) (h g Ng)
|
||||
end
|
||||
|
||||
------------------------------------------------
|
||||
-- FIRST ISOMORPHISM THEOREM
|
||||
------------------------------------------------
|
||||
|
@ -402,7 +411,7 @@ definition is_embedding_kernel_quotient_to_image {A B : AbGroup} (f : A →g B)
|
|||
exact is_embedding_kernel_quotient_extension f
|
||||
end
|
||||
|
||||
definition ab_group_first_iso_thm {A B : AbGroup} (f : A →g B)
|
||||
definition ab_group_first_iso_thm {A B : AbGroup} (f : A →g B)
|
||||
: quotient_ab_group (kernel_subgroup f) ≃g ab_image f :=
|
||||
begin
|
||||
fapply isomorphism.mk,
|
||||
|
@ -464,6 +473,10 @@ definition codomain_surjection_is_quotient_triangle {A B : AbGroup} (f : A →g
|
|||
definition gqg_eq_of_rel {g h : A₁} (H : S (g * h⁻¹)) : gqg_map g = gqg_map h :=
|
||||
eq_of_rel (tr (rincl H))
|
||||
|
||||
-- this one might work if the previous one doesn't (maybe make this the default one?)
|
||||
definition gqg_eq_of_rel' {g h : A₁} (H : S (g * h⁻¹)) : class_of g = class_of h :> quotient_ab_group_gen :=
|
||||
gqg_eq_of_rel H
|
||||
|
||||
definition gqg_elim [constructor] (f : A₁ →g A₂) (H : Π⦃g⦄, S g → f g = 1)
|
||||
: quotient_ab_group_gen →g A₂ :=
|
||||
begin
|
||||
|
|
|
@ -490,6 +490,16 @@ namespace group
|
|||
φ ⬝g ψ ~ ψ ∘ φ :=
|
||||
by reflexivity
|
||||
|
||||
definition add_homomorphism.mk [constructor] {G H : AddGroup} (φ : G → H) (h : is_add_hom φ) : G →g H :=
|
||||
homomorphism.mk φ h
|
||||
|
||||
definition homomorphism_add [constructor] {G H : AddAbGroup} (φ ψ : G →g H) : G →g H :=
|
||||
add_homomorphism.mk (λg, φ g + ψ g)
|
||||
abstract begin
|
||||
intro g g', refine ap011 add !to_respect_add !to_respect_add ⬝ _,
|
||||
refine !add.assoc ⬝ ap (add _) (!add.assoc⁻¹ ⬝ ap (λx, x * _) !add.comm ⬝ !add.assoc) ⬝ !add.assoc⁻¹
|
||||
end end
|
||||
|
||||
definition pmap_of_homomorphism_gid (G : Group) : pmap_of_homomorphism (gid G) ~* pid G :=
|
||||
begin
|
||||
fapply phomotopy_of_homotopy, reflexivity
|
||||
|
|
Loading…
Reference in a new issue