From 5da0c57835470239029f18c627900ec0bb53497c Mon Sep 17 00:00:00 2001 From: Egbert Rijke Date: Fri, 4 Dec 2015 16:03:04 -0500 Subject: [PATCH] added notes --- Notes/macros.tex | 781 ++++++++++++++++++++++++++++++++++++ Notes/notes.tex | 640 +++++++++++++++++++++++++++++ Notes/preamble-articles.tex | 508 +++++++++++++++++++++++ 3 files changed, 1929 insertions(+) create mode 100644 Notes/macros.tex create mode 100644 Notes/notes.tex create mode 100644 Notes/preamble-articles.tex diff --git a/Notes/macros.tex b/Notes/macros.tex new file mode 100644 index 0000000..9085053 --- /dev/null +++ b/Notes/macros.tex @@ -0,0 +1,781 @@ +%%%% MACROS FOR NOTATION %%%% +% Use these for any notation where there are multiple options. + +%%% Notes and exercise sections +\makeatletter +\newcommand{\sectionNotes}{\phantomsection\section*{Notes}\addcontentsline{toc}{section}{Notes}\markright{\textsc{\@chapapp{} \thechapter{} Notes}}} +\newcommand{\sectionExercises}[1]{\phantomsection\section*{Exercises}\addcontentsline{toc}{section}{Exercises}\markright{\textsc{\@chapapp{} \thechapter{} Exercises}}} +\makeatother + +%%% Definitional equality (used infix) %%% +\newcommand{\jdeq}{\equiv} % An equality judgment +\let\judgeq\jdeq +%\newcommand{\defeq}{\coloneqq} % An equality currently being defined +\newcommand{\defeq}{\vcentcolon\equiv} % A judgmental equality currently being defined + +%%% Term being defined +\newcommand{\define}[1]{\textbf{#1}} + +%%% Vec (for example) + +\newcommand{\Vect}{\ensuremath{\mathsf{Vec}}} +\newcommand{\Fin}{\ensuremath{\mathsf{Fin}}} +\newcommand{\fmax}{\ensuremath{\mathsf{fmax}}} +\newcommand{\seq}[1]{\langle #1\rangle} + +%%% Dependent products %%% +\def\prdsym{\textstyle\prod} +%% Call the macro like \prd{x,y:A}{p:x=y} with any number of +%% arguments. Make sure that whatever comes *after* the call doesn't +%% begin with an open-brace, or it will be parsed as another argument. +\makeatletter +% Currently the macro is configured to produce +% {\textstyle\prod}(x:A) \; {\textstyle\prod}(y:B),\ +% in display-math mode, and +% \prod_{(x:A)} \prod_{y:B} +% in text-math mode. +\def\prd#1{\@ifnextchar\bgroup{\prd@parens{#1}}{\@ifnextchar\sm{\prd@parens{#1}\@eatsm}{\prd@noparens{#1}}}} +\def\prd@parens#1{\@ifnextchar\bgroup% + {\mathchoice{\@dprd{#1}}{\@tprd{#1}}{\@tprd{#1}}{\@tprd{#1}}\prd@parens}% + {\@ifnextchar\sm% + {\mathchoice{\@dprd{#1}}{\@tprd{#1}}{\@tprd{#1}}{\@tprd{#1}}\@eatsm}% + {\mathchoice{\@dprd{#1}}{\@tprd{#1}}{\@tprd{#1}}{\@tprd{#1}}}}} +\def\@eatsm\sm{\sm@parens} +\def\prd@noparens#1{\mathchoice{\@dprd@noparens{#1}}{\@tprd{#1}}{\@tprd{#1}}{\@tprd{#1}}} +% Helper macros for three styles +\def\lprd#1{\@ifnextchar\bgroup{\@lprd{#1}\lprd}{\@@lprd{#1}}} +\def\@lprd#1{\mathchoice{{\textstyle\prod}}{\prod}{\prod}{\prod}({\textstyle #1})\;} +\def\@@lprd#1{\mathchoice{{\textstyle\prod}}{\prod}{\prod}{\prod}({\textstyle #1}),\ } +\def\tprd#1{\@tprd{#1}\@ifnextchar\bgroup{\tprd}{}} +\def\@tprd#1{\mathchoice{{\textstyle\prod_{(#1)}}}{\prod_{(#1)}}{\prod_{(#1)}}{\prod_{(#1)}}} +\def\dprd#1{\@dprd{#1}\@ifnextchar\bgroup{\dprd}{}} +\def\@dprd#1{\prod_{(#1)}\,} +\def\@dprd@noparens#1{\prod_{#1}\,} + +%%% Lambda abstractions. +% Each variable being abstracted over is a separate argument. If +% there is more than one such argument, they *must* be enclosed in +% braces. Arguments can be untyped, as in \lam{x}{y}, or typed with a +% colon, as in \lam{x:A}{y:B}. In the latter case, the colons are +% automatically noticed and (with current implementation) the space +% around the colon is reduced. You can even give more than one variable +% the same type, as in \lam{x,y:A}. +\def\lam#1{{\lambda}\@lamarg#1:\@endlamarg\@ifnextchar\bgroup{.\,\lam}{.\,}} +\def\@lamarg#1:#2\@endlamarg{\if\relax\detokenize{#2}\relax #1\else\@lamvar{\@lameatcolon#2},#1\@endlamvar\fi} +\def\@lamvar#1,#2\@endlamvar{(#2\,{:}\,#1)} +% \def\@lamvar#1,#2{{#2}^{#1}\@ifnextchar,{.\,{\lambda}\@lamvar{#1}}{\let\@endlamvar\relax}} +\def\@lameatcolon#1:{#1} +\let\lamt\lam +% This version silently eats any typing annotation. +\def\lamu#1{{\lambda}\@lamuarg#1:\@endlamuarg\@ifnextchar\bgroup{.\,\lamu}{.\,}} +\def\@lamuarg#1:#2\@endlamuarg{#1} + +%%% Dependent products written with \forall, in the same style +\def\fall#1{\forall (#1)\@ifnextchar\bgroup{.\,\fall}{.\,}} + +%%% Existential quantifier %%% +\def\exis#1{\exists (#1)\@ifnextchar\bgroup{.\,\exis}{.\,}} + +%%% Dependent sums %%% +\def\smsym{\textstyle\sum} +% Use in the same way as \prd +\def\sm#1{\@ifnextchar\bgroup{\sm@parens{#1}}{\@ifnextchar\prd{\sm@parens{#1}\@eatprd}{\sm@noparens{#1}}}} +\def\sm@parens#1{\@ifnextchar\bgroup% + {\mathchoice{\@dsm{#1}}{\@tsm{#1}}{\@tsm{#1}}{\@tsm{#1}}\sm@parens}% + {\@ifnextchar\prd% + {\mathchoice{\@dsm{#1}}{\@tsm{#1}}{\@tsm{#1}}{\@tsm{#1}}\@eatprd}% + {\mathchoice{\@dsm{#1}}{\@tsm{#1}}{\@tsm{#1}}{\@tsm{#1}}}}} +\def\@eatprd\prd{\prd@parens} +\def\sm@noparens#1{\mathchoice{\@dsm@noparens{#1}}{\@tsm{#1}}{\@tsm{#1}}{\@tsm{#1}}} +\def\lsm#1{\@ifnextchar\bgroup{\@lsm{#1}\lsm}{\@@lsm{#1}}} +\def\@lsm#1{\mathchoice{{\textstyle\sum}}{\sum}{\sum}{\sum}({\textstyle #1})\;} +\def\@@lsm#1{\mathchoice{{\textstyle\sum}}{\sum}{\sum}{\sum}({\textstyle #1}),\ } +\def\tsm#1{\@tsm{#1}\@ifnextchar\bgroup{\tsm}{}} +\def\@tsm#1{\mathchoice{{\textstyle\sum_{(#1)}}}{\sum_{(#1)}}{\sum_{(#1)}}{\sum_{(#1)}}} +\def\dsm#1{\@dsm{#1}\@ifnextchar\bgroup{\dsm}{}} +\def\@dsm#1{\sum_{(#1)}\,} +\def\@dsm@noparens#1{\sum_{#1}\,} + +%%% W-types +\def\wtypesym{{\mathsf{W}}} +\def\wtype#1{\@ifnextchar\bgroup% + {\mathchoice{\@twtype{#1}}{\@twtype{#1}}{\@twtype{#1}}{\@twtype{#1}}\wtype}% + {\mathchoice{\@twtype{#1}}{\@twtype{#1}}{\@twtype{#1}}{\@twtype{#1}}}} +\def\lwtype#1{\@ifnextchar\bgroup{\@lwtype{#1}\lwtype}{\@@lwtype{#1}}} +\def\@lwtype#1{\mathchoice{{\textstyle\mathsf{W}}}{\mathsf{W}}{\mathsf{W}}{\mathsf{W}}({\textstyle #1})\;} +\def\@@lwtype#1{\mathchoice{{\textstyle\mathsf{W}}}{\mathsf{W}}{\mathsf{W}}{\mathsf{W}}({\textstyle #1}),\ } +\def\twtype#1{\@twtype{#1}\@ifnextchar\bgroup{\twtype}{}} +\def\@twtype#1{\mathchoice{{\textstyle\mathsf{W}_{(#1)}}}{\mathsf{W}_{(#1)}}{\mathsf{W}_{(#1)}}{\mathsf{W}_{(#1)}}} +\def\dwtype#1{\@dwtype{#1}\@ifnextchar\bgroup{\dwtype}{}} +\def\@dwtype#1{\mathsf{W}_{(#1)}\,} + +\newcommand{\suppsym}{{\mathsf{sup}}} +\newcommand{\supp}{\ensuremath\suppsym\xspace} + +\def\wtypeh#1{\@ifnextchar\bgroup% + {\mathchoice{\@lwtypeh{#1}}{\@twtypeh{#1}}{\@twtypeh{#1}}{\@twtypeh{#1}}\wtypeh}% + {\mathchoice{\@@lwtypeh{#1}}{\@twtypeh{#1}}{\@twtypeh{#1}}{\@twtypeh{#1}}}} +\def\lwtypeh#1{\@ifnextchar\bgroup{\@lwtypeh{#1}\lwtypeh}{\@@lwtypeh{#1}}} +\def\@lwtypeh#1{\mathchoice{{\textstyle\mathsf{W}^h}}{\mathsf{W}^h}{\mathsf{W}^h}{\mathsf{W}^h}({\textstyle #1})\;} +\def\@@lwtypeh#1{\mathchoice{{\textstyle\mathsf{W}^h}}{\mathsf{W}^h}{\mathsf{W}^h}{\mathsf{W}^h}({\textstyle #1}),\ } +\def\twtypeh#1{\@twtypeh{#1}\@ifnextchar\bgroup{\twtypeh}{}} +\def\@twtypeh#1{\mathchoice{{\textstyle\mathsf{W}^h_{(#1)}}}{\mathsf{W}^h_{(#1)}}{\mathsf{W}^h_{(#1)}}{\mathsf{W}^h_{(#1)}}} +\def\dwtypeh#1{\@dwtypeh{#1}\@ifnextchar\bgroup{\dwtypeh}{}} +\def\@dwtypeh#1{\mathsf{W}^h_{(#1)}\,} + + +\makeatother + +% Other notations related to dependent sums +\let\setof\Set % from package 'braket', write \setof{ x:A | P(x) }. +\newcommand{\pair}{\ensuremath{\mathsf{pair}}\xspace} +\newcommand{\tup}[2]{(#1,#2)} +\newcommand{\proj}[1]{\ensuremath{\mathsf{pr}_{#1}}\xspace} +\newcommand{\fst}{\ensuremath{\proj1}\xspace} +\newcommand{\snd}{\ensuremath{\proj2}\xspace} +\newcommand{\ac}{\ensuremath{\mathsf{ac}}\xspace} % not needed in symbol index +\newcommand{\un}{\ensuremath{\mathsf{upun}}\xspace} % not needed in symbol index, uniqueness principle for unit type + +%%% recursor and induction +\newcommand{\rec}[1]{\mathsf{rec}_{#1}} +\newcommand{\ind}[1]{\mathsf{ind}_{#1}} +\newcommand{\indid}[1]{\ind{=_{#1}}} % (Martin-Lof) path induction principle for identity types +\newcommand{\indidb}[1]{\ind{=_{#1}}'} % (Paulin-Mohring) based path induction principle for identity types + +%%% the uniqueness principle for product types, formerly called surjective pairing and named \spr: +\newcommand{\uppt}{\ensuremath{\mathsf{uppt}}\xspace} + +% Paths in pairs +\newcommand{\pairpath}{\ensuremath{\mathsf{pair}^{\mathord{=}}}\xspace} +% \newcommand{\projpath}[1]{\proj{#1}^{\mathord{=}}} +\newcommand{\projpath}[1]{\ensuremath{\apfunc{\proj{#1}}}\xspace} + +%%% For quotients %%% +%\newcommand{\pairr}[1]{{\langle #1\rangle}} +\newcommand{\pairr}[1]{{\mathopen{}(#1)\mathclose{}}} +\newcommand{\Pairr}[1]{{\mathopen{}\left(#1\right)\mathclose{}}} + +% \newcommand{\type}{\ensuremath{\mathsf{Type}}} % this command is overridden below, so it's commented out +\newcommand{\im}{\ensuremath{\mathsf{im}}} % the image + +%%% 2D path operations +\newcommand{\leftwhisker}{\mathbin{{\ct}_{\ell}}} +\newcommand{\rightwhisker}{\mathbin{{\ct}_{r}}} +\newcommand{\hct}{\star} + +%%% modalities %%% +\newcommand{\modal}{\ensuremath{\ocircle}} +\let\reflect\modal +\newcommand{\modaltype}{\ensuremath{\type_\modal}} +% \newcommand{\ism}[1]{\ensuremath{\mathsf{is}_{#1}}} +% \newcommand{\ismodal}{\ism{\modal}} +% \newcommand{\existsmodal}{\ensuremath{{\exists}_{\modal}}} +% \newcommand{\existsmodalunique}{\ensuremath{{\exists!}_{\modal}}} +% \newcommand{\modalfunc}{\textsf{\modal-fun}} +% \newcommand{\Ecirc}{\ensuremath{\mathsf{E}_\modal}} +% \newcommand{\Mcirc}{\ensuremath{\mathsf{M}_\modal}} +\newcommand{\mreturn}{\ensuremath{\eta}} +\let\project\mreturn +%\newcommand{\mbind}[1]{\ensuremath{\hat{#1}}} +\newcommand{\ext}{\mathsf{ext}} +%\newcommand{\mmap}[1]{\ensuremath{\bar{#1}}} +%\newcommand{\mjoin}{\ensuremath{\mreturn^{-1}}} +% Subuniverse +\renewcommand{\P}{\ensuremath{\type_{P}}\xspace} + +%%% Localizations +% \newcommand{\islocal}[1]{\ensuremath{\mathsf{islocal}_{#1}}\xspace} +% \newcommand{\loc}[1]{\ensuremath{\mathcal{L}_{#1}}\xspace} + +%%% Identity types %%% +\newcommand{\idsym}{{=}} +\newcommand{\id}[3][]{\ensuremath{#2 =_{#1} #3}\xspace} +\newcommand{\idtype}[3][]{\ensuremath{\mathsf{Id}_{#1}(#2,#3)}\xspace} +\newcommand{\idtypevar}[1]{\ensuremath{\mathsf{Id}_{#1}}\xspace} +% A propositional equality currently being defined +\newcommand{\defid}{\coloneqq} + +%%% Dependent paths +\newcommand{\dpath}[4]{#3 =^{#1}_{#2} #4} + +%%% singleton +% \newcommand{\sgl}{\ensuremath{\mathsf{sgl}}\xspace} +% \newcommand{\sctr}{\ensuremath{\mathsf{sctr}}\xspace} + +%%% Reflexivity terms %%% +% \newcommand{\reflsym}{{\mathsf{refl}}} +\newcommand{\refl}[1]{\ensuremath{\mathsf{refl}_{#1}}\xspace} + +%%% Path concatenation (used infix, in diagrammatic order) %%% +\newcommand{\ct}{% + \mathchoice{\mathbin{\raisebox{0.5ex}{$\displaystyle\centerdot$}}}% + {\mathbin{\raisebox{0.5ex}{$\centerdot$}}}% + {\mathbin{\raisebox{0.25ex}{$\scriptstyle\,\centerdot\,$}}}% + {\mathbin{\raisebox{0.1ex}{$\scriptscriptstyle\,\centerdot\,$}}} +} + +%%% Path reversal %%% +\newcommand{\opp}[1]{\mathord{{#1}^{-1}}} +\let\rev\opp + +%%% Transport (covariant) %%% +\newcommand{\trans}[2]{\ensuremath{{#1}_{*}\mathopen{}\left({#2}\right)\mathclose{}}\xspace} +\let\Trans\trans +%\newcommand{\Trans}[2]{\ensuremath{{#1}_{*}\left({#2}\right)}\xspace} +\newcommand{\transf}[1]{\ensuremath{{#1}_{*}}\xspace} % Without argument +%\newcommand{\transport}[2]{\ensuremath{\mathsf{transport}_{*} \: {#2}\xspace}} +\newcommand{\transfib}[3]{\ensuremath{\mathsf{transport}^{#1}(#2,#3)\xspace}} +\newcommand{\Transfib}[3]{\ensuremath{\mathsf{transport}^{#1}\Big(#2,\, #3\Big)\xspace}} +\newcommand{\transfibf}[1]{\ensuremath{\mathsf{transport}^{#1}\xspace}} + +%%% 2D transport +\newcommand{\transtwo}[2]{\ensuremath{\mathsf{transport}^2\mathopen{}\left({#1},{#2}\right)\mathclose{}}\xspace} + +%%% Constant transport +\newcommand{\transconst}[3]{\ensuremath{\mathsf{transportconst}}^{#1}_{#2}(#3)\xspace} +\newcommand{\transconstf}{\ensuremath{\mathsf{transportconst}}\xspace} + +%%% Map on paths %%% +\newcommand{\mapfunc}[1]{\ensuremath{\mathsf{ap}_{#1}}\xspace} % Without argument +\newcommand{\map}[2]{\ensuremath{{#1}\mathopen{}\left({#2}\right)\mathclose{}}\xspace} +\let\Ap\map +%\newcommand{\Ap}[2]{\ensuremath{{#1}\left({#2}\right)}\xspace} +\newcommand{\mapdepfunc}[1]{\ensuremath{\mathsf{apd}_{#1}}\xspace} % Without argument +% \newcommand{\mapdep}[2]{\ensuremath{{#1}\llparenthesis{#2}\rrparenthesis}\xspace} +\newcommand{\mapdep}[2]{\ensuremath{\mapdepfunc{#1}\mathopen{}\left(#2\right)\mathclose{}}\xspace} +\let\apfunc\mapfunc +\let\ap\map +\let\apdfunc\mapdepfunc +\let\apd\mapdep + +%%% 2D map on paths +\newcommand{\aptwofunc}[1]{\ensuremath{\mathsf{ap}^2_{#1}}\xspace} +\newcommand{\aptwo}[2]{\ensuremath{\aptwofunc{#1}\mathopen{}\left({#2}\right)\mathclose{}}\xspace} +\newcommand{\apdtwofunc}[1]{\ensuremath{\mathsf{apd}^2_{#1}}\xspace} +\newcommand{\apdtwo}[2]{\ensuremath{\apdtwofunc{#1}\mathopen{}\left(#2\right)\mathclose{}}\xspace} + +%%% Identity functions %%% +\newcommand{\idfunc}[1][]{\ensuremath{\mathsf{id}_{#1}}\xspace} + +%%% Homotopies (written infix) %%% +\newcommand{\htpy}{\sim} + +%%% Other meanings of \sim +\newcommand{\bisim}{\sim} % bisimulation +\newcommand{\eqr}{\sim} % an equivalence relation + +%%% Equivalence types %%% +\newcommand{\eqv}[2]{\ensuremath{#1 \simeq #2}\xspace} +\newcommand{\eqvspaced}[2]{\ensuremath{#1 \;\simeq\; #2}\xspace} +\newcommand{\eqvsym}{\simeq} % infix symbol +\newcommand{\texteqv}[2]{\ensuremath{\mathsf{Equiv}(#1,#2)}\xspace} +\newcommand{\isequiv}{\ensuremath{\mathsf{isequiv}}} +\newcommand{\qinv}{\ensuremath{\mathsf{qinv}}} +\newcommand{\ishae}{\ensuremath{\mathsf{ishae}}} +\newcommand{\linv}{\ensuremath{\mathsf{linv}}} +\newcommand{\rinv}{\ensuremath{\mathsf{rinv}}} +\newcommand{\biinv}{\ensuremath{\mathsf{biinv}}} +\newcommand{\lcoh}[3]{\mathsf{lcoh}_{#1}(#2,#3)} +\newcommand{\rcoh}[3]{\mathsf{rcoh}_{#1}(#2,#3)} +\newcommand{\hfib}[2]{{\mathsf{fib}}_{#1}(#2)} + +%%% Map on total spaces %%% +\newcommand{\total}[1]{\ensuremath{\mathsf{total}(#1)}} + +%%% Universe types %%% +%\newcommand{\type}{\ensuremath{\mathsf{Type}}\xspace} +\newcommand{\UU}{\ensuremath{\mathcal{U}}\xspace} +\let\bbU\UU +\let\type\UU +% Universes of truncated types +\newcommand{\typele}[1]{\ensuremath{{#1}\text-\mathsf{Type}}\xspace} +\newcommand{\typeleU}[1]{\ensuremath{{#1}\text-\mathsf{Type}_\UU}\xspace} +\newcommand{\typelep}[1]{\ensuremath{{(#1)}\text-\mathsf{Type}}\xspace} +\newcommand{\typelepU}[1]{\ensuremath{{(#1)}\text-\mathsf{Type}_\UU}\xspace} +\let\ntype\typele +\let\ntypeU\typeleU +\let\ntypep\typelep +\let\ntypepU\typelepU +\renewcommand{\set}{\ensuremath{\mathsf{Set}}\xspace} +\newcommand{\setU}{\ensuremath{\mathsf{Set}_\UU}\xspace} +\newcommand{\prop}{\ensuremath{\mathsf{Prop}}\xspace} +\newcommand{\propU}{\ensuremath{\mathsf{Prop}_\UU}\xspace} +%Pointed types +\newcommand{\pointed}[1]{\ensuremath{#1_\bullet}} + +%%% Ordinals and cardinals +\newcommand{\card}{\ensuremath{\mathsf{Card}}\xspace} +\newcommand{\ord}{\ensuremath{\mathsf{Ord}}\xspace} +\newcommand{\ordsl}[2]{{#1}_{/#2}} + +%%% Univalence +\newcommand{\ua}{\ensuremath{\mathsf{ua}}\xspace} % the inverse of idtoeqv +\newcommand{\idtoeqv}{\ensuremath{\mathsf{idtoeqv}}\xspace} +\newcommand{\univalence}{\ensuremath{\mathsf{univalence}}\xspace} % the full axiom + +%%% Truncation levels +\newcommand{\iscontr}{\ensuremath{\mathsf{isContr}}} +\newcommand{\contr}{\ensuremath{\mathsf{contr}}} % The path to the center of contraction +\newcommand{\isset}{\ensuremath{\mathsf{isSet}}} +\newcommand{\isprop}{\ensuremath{\mathsf{isProp}}} +% h-propositions +% \newcommand{\anhprop}{a mere proposition\xspace} +% \newcommand{\hprops}{mere propositions\xspace} + +%%% Homotopy fibers %%% +%\newcommand{\hfiber}[2]{\ensuremath{\mathsf{hFiber}(#1,#2)}\xspace} +\let\hfiber\hfib + +%%% Bracket/squash/truncation types %%% +% \newcommand{\brck}[1]{\textsf{mere}(#1)} +% \newcommand{\Brck}[1]{\textsf{mere}\Big(#1\Big)} +% \newcommand{\trunc}[2]{\tau_{#1}(#2)} +% \newcommand{\Trunc}[2]{\tau_{#1}\Big(#2\Big)} +% \newcommand{\truncf}[1]{\tau_{#1}} +%\newcommand{\trunc}[2]{\Vert #2\Vert_{#1}} +\newcommand{\trunc}[2]{\mathopen{}\left\Vert #2\right\Vert_{#1}\mathclose{}} +\newcommand{\ttrunc}[2]{\bigl\Vert #2\bigr\Vert_{#1}} +\newcommand{\Trunc}[2]{\Bigl\Vert #2\Bigr\Vert_{#1}} +\newcommand{\truncf}[1]{\Vert \blank \Vert_{#1}} +\newcommand{\tproj}[3][]{\mathopen{}\left|#3\right|_{#2}^{#1}\mathclose{}} +\newcommand{\tprojf}[2][]{|\blank|_{#2}^{#1}} +\def\pizero{\trunc0} +%\newcommand{\brck}[1]{\trunc{-1}{#1}} +%\newcommand{\Brck}[1]{\Trunc{-1}{#1}} +%\newcommand{\bproj}[1]{\tproj{-1}{#1}} +%\newcommand{\bprojf}{\tprojf{-1}} + +\newcommand{\brck}[1]{\trunc{}{#1}} +\newcommand{\bbrck}[1]{\ttrunc{}{#1}} +\newcommand{\Brck}[1]{\Trunc{}{#1}} +\newcommand{\bproj}[1]{\tproj{}{#1}} +\newcommand{\bprojf}{\tprojf{}} + +% Big parentheses +\newcommand{\Parens}[1]{\Bigl(#1\Bigr)} + +% Projection and extension for truncations +\let\extendsmb\ext +\newcommand{\extend}[1]{\extendsmb(#1)} + +% +%%% The empty type +\newcommand{\emptyt}{\ensuremath{\mathbf{0}}\xspace} + +%%% The unit type +\newcommand{\unit}{\ensuremath{\mathbf{1}}\xspace} +\newcommand{\ttt}{\ensuremath{\star}\xspace} + +%%% The two-element type +\newcommand{\bool}{\ensuremath{\mathbf{2}}\xspace} +\newcommand{\btrue}{{1_{\bool}}} +\newcommand{\bfalse}{{0_{\bool}}} + +%%% Injections into binary sums and pushouts +\newcommand{\inlsym}{{\mathsf{inl}}} +\newcommand{\inrsym}{{\mathsf{inr}}} +\newcommand{\inl}{\ensuremath\inlsym\xspace} +\newcommand{\inr}{\ensuremath\inrsym\xspace} + +%%% The segment of the interval +\newcommand{\seg}{\ensuremath{\mathsf{seg}}\xspace} + +%%% Free groups +\newcommand{\freegroup}[1]{F(#1)} +\newcommand{\freegroupx}[1]{F'(#1)} % the "other" free group + +%%% Glue of a pushout +\newcommand{\glue}{\mathsf{glue}} + +%%% Circles and spheres +\newcommand{\Sn}{\mathbb{S}} +\newcommand{\base}{\ensuremath{\mathsf{base}}\xspace} +\newcommand{\lloop}{\ensuremath{\mathsf{loop}}\xspace} +\newcommand{\surf}{\ensuremath{\mathsf{surf}}\xspace} + +%%% Suspension +\newcommand{\susp}{\Sigma} +\newcommand{\north}{\mathsf{N}} +\newcommand{\south}{\mathsf{S}} +\newcommand{\merid}{\mathsf{merid}} + +%%% Blanks (shorthand for lambda abstractions) +\newcommand{\blank}{\mathord{\hspace{1pt}\text{--}\hspace{1pt}}} + +%%% Nameless objects +\newcommand{\nameless}{\mathord{\hspace{1pt}\underline{\hspace{1ex}}\hspace{1pt}}} + +%%% Some decorations +%\newcommand{\bbU}{\ensuremath{\mathbb{U}}\xspace} +% \newcommand{\bbB}{\ensuremath{\mathbb{B}}\xspace} +\newcommand{\bbP}{\ensuremath{\mathbb{P}}\xspace} + +%%% Some categories +\newcommand{\uset}{\ensuremath{\mathcal{S}et}\xspace} +\newcommand{\ucat}{\ensuremath{{\mathcal{C}at}}\xspace} +\newcommand{\urel}{\ensuremath{\mathcal{R}el}\xspace} +\newcommand{\uhilb}{\ensuremath{\mathcal{H}ilb}\xspace} +\newcommand{\utype}{\ensuremath{\mathcal{T}\!ype}\xspace} + +% Pullback corner +%\newbox\pbbox +%\setbox\pbbox=\hbox{\xy \POS(65,0)\ar@{-} (0,0) \ar@{-} (65,65)\endxy} +%\def\pb{\save[]+<3.5mm,-3.5mm>*{\copy\pbbox} \restore} + +% Macros for the categories chapter +\newcommand{\inv}[1]{{#1}^{-1}} +\newcommand{\idtoiso}{\ensuremath{\mathsf{idtoiso}}\xspace} +\newcommand{\isotoid}{\ensuremath{\mathsf{isotoid}}\xspace} +\newcommand{\op}{^{\mathrm{op}}} +\newcommand{\y}{\ensuremath{\mathbf{y}}\xspace} +\newcommand{\dgr}[1]{{#1}^{\dagger}} +\newcommand{\unitaryiso}{\mathrel{\cong^\dagger}} +\newcommand{\cteqv}[2]{\ensuremath{#1 \simeq #2}\xspace} +\newcommand{\cteqvsym}{\simeq} % Symbol for equivalence of categories + +%%% Natural numbers +\newcommand{\N}{\ensuremath{\mathbb{N}}\xspace} +%\newcommand{\N}{\textbf{N}} +\let\nat\N +\newcommand{\natp}{\ensuremath{\nat'}\xspace} % alternative nat in induction chapter + +\newcommand{\zerop}{\ensuremath{0'}\xspace} % alternative zero in induction chapter +\newcommand{\suc}{\mathsf{succ}} +\newcommand{\sucp}{\ensuremath{\suc'}\xspace} % alternative suc in induction chapter +\newcommand{\add}{\mathsf{add}} +\newcommand{\ack}{\mathsf{ack}} +\newcommand{\ite}{\mathsf{iter}} +\newcommand{\assoc}{\mathsf{assoc}} +\newcommand{\dbl}{\ensuremath{\mathsf{double}}} +\newcommand{\dblp}{\ensuremath{\dbl'}\xspace} % alternative double in induction chapter + + +%%% Lists +\newcommand{\lst}[1]{\mathsf{List}(#1)} +\newcommand{\nil}{\mathsf{nil}} +\newcommand{\cons}{\mathsf{cons}} + +%%% Vectors of given length, used in induction chapter +\newcommand{\vect}[2]{\ensuremath{\mathsf{Vec}_{#1}(#2)}\xspace} + +%%% Integers +\newcommand{\Z}{\ensuremath{\mathbb{Z}}\xspace} +\newcommand{\Zsuc}{\mathsf{succ}} +\newcommand{\Zpred}{\mathsf{pred}} + +%%% Rationals +\newcommand{\Q}{\ensuremath{\mathbb{Q}}\xspace} + +%%% Function extensionality +\newcommand{\funext}{\mathsf{funext}} +\newcommand{\happly}{\mathsf{happly}} + +%%% A naturality lemma +\newcommand{\com}[3]{\mathsf{swap}_{#1,#2}(#3)} + +%%% Code/encode/decode +\newcommand{\code}{\ensuremath{\mathsf{code}}\xspace} +\newcommand{\encode}{\ensuremath{\mathsf{encode}}\xspace} +\newcommand{\decode}{\ensuremath{\mathsf{decode}}\xspace} + +% Function definition with domain and codomain +\newcommand{\function}[4]{\left\{\begin{array}{rcl}#1 & + \longrightarrow & #2 \\ #3 & \longmapsto & #4 \end{array}\right.} + +%%% Cones and cocones +\newcommand{\cone}[2]{\mathsf{cone}_{#1}(#2)} +\newcommand{\cocone}[2]{\mathsf{cocone}_{#1}(#2)} +% Apply a function to a cocone +\newcommand{\composecocone}[2]{#1\circ#2} +\newcommand{\composecone}[2]{#2\circ#1} +%%% Diagrams +\newcommand{\Ddiag}{\mathscr{D}} + +%%% (pointed) mapping spaces +\newcommand{\Map}{\mathsf{Map}} + +%%% The interval +\newcommand{\interval}{\ensuremath{I}\xspace} +\newcommand{\izero}{\ensuremath{0_{\interval}}\xspace} +\newcommand{\ione}{\ensuremath{1_{\interval}}\xspace} + +%%% Arrows +\newcommand{\epi}{\ensuremath{\twoheadrightarrow}} +\newcommand{\mono}{\ensuremath{\rightarrowtail}} + +%%% Sets +\newcommand{\bin}{\ensuremath{\mathrel{\widetilde{\in}}}} + +%%% Semigroup structure +\newcommand{\semigroupstrsym}{\ensuremath{\mathsf{SemigroupStr}}} +\newcommand{\semigroupstr}[1]{\ensuremath{\mathsf{SemigroupStr}}(#1)} +\newcommand{\semigroup}[0]{\ensuremath{\mathsf{Semigroup}}} + +%%% Macros for the formal type theory +\newcommand{\emptyctx}{\ensuremath{\cdot}} +\newcommand{\production}{\vcentcolon\vcentcolon=} +\newcommand{\conv}{\downarrow} +\newcommand{\ctx}{\ensuremath{\mathsf{ctx}}} +\newcommand{\wfctx}[1]{#1\ \ctx} +\newcommand{\oftp}[3]{#1 \vdash #2 : #3} +\newcommand{\jdeqtp}[4]{#1 \vdash #2 \jdeq #3 : #4} +\newcommand{\judg}[2]{#1 \vdash #2} +\newcommand{\tmtp}[2]{#1 \mathord{:} #2} + +% rule names +\newcommand{\form}{\textsc{form}} +\newcommand{\intro}{\textsc{intro}} +\newcommand{\elim}{\textsc{elim}} +\newcommand{\comp}{\textsc{comp}} +\newcommand{\uniq}{\textsc{uniq}} +\newcommand{\Weak}{\mathsf{Wkg}} +\newcommand{\Vble}{\mathsf{Vble}} +\newcommand{\Exch}{\mathsf{Exch}} +\newcommand{\Subst}{\mathsf{Subst}} + +%%% Macros for HITs +\newcommand{\cc}{\mathsf{c}} +\newcommand{\pp}{\mathsf{p}} +\newcommand{\cct}{\widetilde{\mathsf{c}}} +\newcommand{\ppt}{\widetilde{\mathsf{p}}} +\newcommand{\Wtil}{\ensuremath{\widetilde{W}}\xspace} + +%%% Macros for n-types +\newcommand{\istype}[1]{\mathsf{is}\mbox{-}{#1}\mbox{-}\mathsf{type}} +\newcommand{\nplusone}{\ensuremath{(n+1)}} +\newcommand{\nminusone}{\ensuremath{(n-1)}} +\newcommand{\fact}{\mathsf{fact}} + +%%% Macros for homotopy +\newcommand{\kbar}{\overline{k}} % Used in van Kampen's theorem + +%%% Macros for induction +\newcommand{\natw}{\ensuremath{\mathbf{N^w}}\xspace} +\newcommand{\zerow}{\ensuremath{0^\mathbf{w}}\xspace} +\newcommand{\sucw}{\ensuremath{\mathbf{s^w}}\xspace} +\newcommand{\nalg}{\nat\mathsf{Alg}} +\newcommand{\nhom}{\nat\mathsf{Hom}} +\newcommand{\ishinitw}{\mathsf{isHinit}_{\mathsf{W}}} +\newcommand{\ishinitn}{\mathsf{isHinit}_\nat} +\newcommand{\w}{\mathsf{W}} +\newcommand{\walg}{\w\mathsf{Alg}} +\newcommand{\whom}{\w\mathsf{Hom}} + +%%% Macros for real numbers +\newcommand{\RC}{\ensuremath{\mathbb{R}_\mathsf{c}}\xspace} % Cauchy +\newcommand{\RD}{\ensuremath{\mathbb{R}_\mathsf{d}}\xspace} % Dedekind +\newcommand{\R}{\ensuremath{\mathbb{R}}\xspace} % Either +\newcommand{\barRD}{\ensuremath{\bar{\mathbb{R}}_\mathsf{d}}\xspace} % Dedekind completion of Dedekind + +\newcommand{\close}[1]{\sim_{#1}} % Relation of closeness +\newcommand{\closesym}{\mathord\sim} +\newcommand{\rclim}{\mathsf{lim}} % HIT constructor for Cauchy reals +\newcommand{\rcrat}{\mathsf{rat}} % Embedding of rationals into Cauchy reals +\newcommand{\rceq}{\mathsf{eq}_{\RC}} % HIT path constructor +\newcommand{\CAP}{\mathcal{C}} % The type of Cauchy approximations +\newcommand{\Qp}{\Q_{+}} +\newcommand{\apart}{\mathrel{\#}} % apartness +\newcommand{\dcut}{\mathsf{isCut}} % Dedekind cut +\newcommand{\cover}{\triangleleft} % inductive cover +\newcommand{\intfam}[3]{(#2, \lam{#1} #3)} % family of rational intervals + +% Macros for the Cauchy reals construction +\newcommand{\bsim}{\frown} +\newcommand{\bbsim}{\smile} + +\newcommand{\hapx}{\diamondsuit\approx} +\newcommand{\hapname}{\diamondsuit} +\newcommand{\hapxb}{\heartsuit\approx} +\newcommand{\hapbname}{\heartsuit} +\newcommand{\tap}[1]{\bullet\approx_{#1}\triangle} +\newcommand{\tapname}{\triangle} +\newcommand{\tapb}[1]{\bullet\approx_{#1}\square} +\newcommand{\tapbname}{\square} + +%%% Macros for surreals +\newcommand{\NO}{\ensuremath{\mathsf{No}}\xspace} +\newcommand{\surr}[2]{\{\,#1\,\big|\,#2\,\}} +\newcommand{\LL}{\mathcal{L}} +\newcommand{\RR}{\mathcal{R}} +\newcommand{\noeq}{\mathsf{eq}_{\NO}} % HIT path constructor + +\newcommand{\ble}{\trianglelefteqslant} +\newcommand{\blt}{\vartriangleleft} +\newcommand{\bble}{\sqsubseteq} +\newcommand{\bblt}{\sqsubset} + +\newcommand{\hle}{\diamondsuit\preceq} +\newcommand{\hlt}{\diamondsuit\prec} +\newcommand{\hlname}{\diamondsuit} +\newcommand{\hleb}{\heartsuit\preceq} +\newcommand{\hltb}{\heartsuit\prec} +\newcommand{\hlbname}{\heartsuit} +% \newcommand{\tle}{(\bullet\preceq\triangle)} +% \newcommand{\tlt}{(\bullet\prec\triangle)} +\newcommand{\tle}{\triangle\preceq} +\newcommand{\tlt}{\triangle\prec} +\newcommand{\tlname}{\triangle} +% \newcommand{\tleb}{(\bullet\preceq\square)} +% \newcommand{\tltb}{(\bullet\prec\square)} +\newcommand{\tleb}{\square\preceq} +\newcommand{\tltb}{\square\prec} +\newcommand{\tlbname}{\square} + +%%% Macros for set theory +\newcommand{\vset}{\mathsf{set}} % point constructor for cummulative hierarchy V +\def\cd{\tproj0} +\newcommand{\inj}{\ensuremath{\mathsf{inj}}} % type of injections +\newcommand{\acc}{\ensuremath{\mathsf{acc}}} % accessibility + +\newcommand{\atMostOne}{\mathsf{atMostOne}} + +\newcommand{\power}[1]{\mathcal{P}(#1)} % power set +\newcommand{\powerp}[1]{\mathcal{P}_+(#1)} % inhabited power set + +%%%% THEOREM ENVIRONMENTS %%%% + +% Hyperref includes the command \autoref{...} which is like \ref{...} +% except that it automatically inserts the type of the thing you're +% referring to, e.g. it produces "Theorem 3.8" instead of just "3.8" +% (and makes the whole thing a hyperlink). This saves a slight amount +% of typing, but more importantly it means that if you decide later on +% that 3.8 should be a Lemma or a Definition instead of a Theorem, you +% don't have to change the name in all the places you referred to it. + +% The following hack improves on this by using the same counter for +% all theorem-type environments, so that after Theorem 1.1 comes +% Corollary 1.2 rather than Corollary 1.1. This makes it much easier +% for the reader to find a particular theorem when flipping through +% the document. +\makeatletter +\def\defthm#1#2#3{% + %% Ensure all theorem types are numbered with the same counter + \newaliascnt{#1}{thm} + \newtheorem{#1}[#1]{#2} + \aliascntresetthe{#1} + %% This command tells cleveref's \cref what to call things + \crefname{#1}{#2}{#3}} + +% Now define a bunch of theorem-type environments. +\newtheorem{thm}{Theorem}[section] +\crefname{thm}{Theorem}{Theorems} +%\defthm{prop}{Proposition} % Probably we shouldn't use "Proposition" in this way +\defthm{cor}{Corollary}{Corollaries} +\defthm{lem}{Lemma}{Lemmas} +\defthm{axiom}{Axiom}{Axioms} +% Since definitions and theorems in type theory are synonymous, should +% we actually use the same theoremstyle for them? +\theoremstyle{definition} +\defthm{defn}{Definition}{Definitions} +\theoremstyle{remark} +\defthm{rmk}{Remark}{Remarks} +\defthm{eg}{Example}{Examples} +\defthm{egs}{Examples}{Examples} +\defthm{notes}{Notes}{Notes} +% Number exercises within chapters, with their own counter. +%\newtheorem{ex}{Exercise}[chapter] +%\crefname{ex}{Exercise}{Exercises} + +% Display format for sections +\crefformat{section}{\S#2#1#3} +\Crefformat{section}{Section~#2#1#3} +\crefrangeformat{section}{\S\S#3#1#4--#5#2#6} +\Crefrangeformat{section}{Sections~#3#1#4--#5#2#6} +\crefmultiformat{section}{\S\S#2#1#3}{ and~#2#1#3}{, #2#1#3}{ and~#2#1#3} +\Crefmultiformat{section}{Sections~#2#1#3}{ and~#2#1#3}{, #2#1#3}{ and~#2#1#3} +\crefrangemultiformat{section}{\S\S#3#1#4--#5#2#6}{ and~#3#1#4--#5#2#6}{, #3#1#4--#5#2#6}{ and~#3#1#4--#5#2#6} +\Crefrangemultiformat{section}{Sections~#3#1#4--#5#2#6}{ and~#3#1#4--#5#2#6}{, #3#1#4--#5#2#6}{ and~#3#1#4--#5#2#6} + +% Display format for appendices +\crefformat{appendix}{Appendix~#2#1#3} +\Crefformat{appendix}{Appendix~#2#1#3} +\crefrangeformat{appendix}{Appendices~#3#1#4--#5#2#6} +\Crefrangeformat{appendix}{Appendices~#3#1#4--#5#2#6} +\crefmultiformat{appendix}{Appendices~#2#1#3}{ and~#2#1#3}{, #2#1#3}{ and~#2#1#3} +\Crefmultiformat{appendix}{Appendices~#2#1#3}{ and~#2#1#3}{, #2#1#3}{ and~#2#1#3} +\crefrangemultiformat{appendix}{Appendices~#3#1#4--#5#2#6}{ and~#3#1#4--#5#2#6}{, #3#1#4--#5#2#6}{ and~#3#1#4--#5#2#6} +\Crefrangemultiformat{appendix}{Appendices~#3#1#4--#5#2#6}{ and~#3#1#4--#5#2#6}{, #3#1#4--#5#2#6}{ and~#3#1#4--#5#2#6} + +\crefname{part}{Part}{Parts} + +% Number subsubsections +\setcounter{secnumdepth}{5} + +% Display format for figures +\crefname{figure}{Figure}{Figures} + +% Use cleveref instead of hyperref's \autoref +\let\autoref\cref + + +%%%% EQUATION NUMBERING %%%% + +% The following hack uses the single theorem counter to number +% equations as well, so that we don't have both Theorem 1.1 and +% equation (1.1). +\let\c@equation\c@thm +\numberwithin{equation}{section} + + +%%%% ENUMERATE NUMBERING %%%% + +% Number the first level of enumerates as (i), (ii), ... +\renewcommand{\theenumi}{(\roman{enumi})} +\renewcommand{\labelenumi}{\theenumi} + + +%%%% MARGINS %%%% + +% This is a matter of personal preference, but I think the left +% margins on enumerates and itemizes are too wide. +\setitemize[1]{leftmargin=2em} +\setenumerate[1]{leftmargin=*} + +% Likewise that they are too spaced out. +\setitemize[1]{itemsep=-0.2em} +\setenumerate[1]{itemsep=-0.2em} + +%%% Notes %%% +\def\noteson{% +\gdef\note##1{\mbox{}\marginpar{\color{blue}\textasteriskcentered\ ##1}}} +\gdef\notesoff{\gdef\note##1{\null}} +\noteson + +\newcommand{\Coq}{\textsc{Coq}\xspace} +\newcommand{\Agda}{\textsc{Agda}\xspace} +\newcommand{\NuPRL}{\textsc{NuPRL}\xspace} + +%%%% CITATIONS %%%% + +% \let \cite \citep + +%%%% INDEX %%%% + +\newcommand{\footstyle}[1]{{\hyperpage{#1}}n} % If you index something that is in a footnote +\newcommand{\defstyle}[1]{\textbf{\hyperpage{#1}}} % Style for pageref to a definition + +\newcommand{\indexdef}[1]{\index{#1|defstyle}} % Index a definition +\newcommand{\indexfoot}[1]{\index{#1|footstyle}} % Index a term in a footnote +\newcommand{\indexsee}[2]{\index{#1|see{#2}}} % Index "see also" + + +%%%% Standard phrasing or spelling of common phrases %%%% + +\newcommand{\ZF}{Zermelo--Fraenkel} +\newcommand{\CZF}{Constructive \ZF{} Set Theory} + +\newcommand{\LEM}[1]{\ensuremath{\mathsf{LEM}_{#1}}\xspace} +\newcommand{\choice}[1]{\ensuremath{\mathsf{AC}_{#1}}\xspace} + +%%%% MISC %%%% + +\newcommand{\mentalpause}{\medskip} % Use for "mental" pause, instead of \smallskip or \medskip + +%% Use \symlabel instead of \label to mark a pageref that you need in the index of symbols +\newcounter{symindex} +\newcommand{\symlabel}[1]{\refstepcounter{symindex}\label{#1}} + +% Local Variables: +% mode: latex +% TeX-master: "hott-online" +% End: diff --git a/Notes/notes.tex b/Notes/notes.tex new file mode 100644 index 0000000..4b1ed1e --- /dev/null +++ b/Notes/notes.tex @@ -0,0 +1,640 @@ +\documentclass{article} + +\input{preamble-articles} + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%%%% We define a command \@ifnextcharamong accepting an arbitrary number of +%%%% arguments. The first is what it should do if a match is found, the second +%%%% contains what it should do when no match is found; all the other arguments +%%%% are the things it tries to find as the next character. +%%%% +%%%% For example \@ifnextcharamong{#1}{#2}{*}{\bgroup} expands #1 if the next +%%%% character is a * or a \bgroup and it expands #2 otherwise. + +\makeatletter +\newcommand{\@ifnextcharamong}[2] + {\@ifnextchar\bgroup{\@@ifnextchar{#1}{\@@ifnextcharamong{#1}{#2}}}{#2}} +\newcommand{\@@ifnextchar}[3]{\@ifnextchar{#3}{#1}{#2}} +\newcommand{\@@ifnextcharamong}[3]{\@ifnextcharamong{#1}{#2}} +\makeatother + +\newcommand{\ucomp}[1]{\hat{#1}} +\newcommand{\finset}[1]{{[#1]}} + +\makeatletter +\newcommand{\higherequifibsf}{\mathcal} +\newcommand{\higherequifib}[2]{\higherequifibsf{#1}(#2)} +\newcommand{\underlyinggraph}[1]{U(#1)} +\newcommand{\theequifib}[1]{{\def\higherequifibsf{}#1}} +\makeatother + +\newcommand{\loopspace}[2][]{\typefont{\Omega}^{#1}(#2)} +\newcommand{\join}[2]{{#1}*{#2}} + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\title{Notes on algebraic topology} +\date{\today} + +\begin{document} + +\maketitle + +\tableofcontents + +\part{Spectral sequences} +\section{Background} +\begin{defn} +A graded $R$-module $M$ is an $R$-module which decomposes as a direct +sum +\begin{equation*} +\bigoplus_{p\in\Z} F_p M +\end{equation*} +of $R$-modules. A graded $R$-homomorphism $h:M\to N$ is an $R$-homomorphism which +decomposes into $h_p:F_pM\to F_pN$. +\end{defn} + +\begin{lem} +Suppose $M$ and $N$ are graded $R$-modules. Then $M\otimes N$ is a graded +$R$-module by +\begin{equation*} +(M\otimes_R N)_i\defeq \bigoplus_{p+q=i} F_pM\otimes_R F_qN. +\end{equation*} +\end{lem} + +\begin{defn} +A graded algebra is a graded $R$-module $M$ for which there are linear mappings +$\varphi_{p,q}:F_pM\otimes_R F_qM\to F_{p+q}M$, i.e.~a graded $R$-homomorphism +$\varphi:M\otimes M\to M$, which is associative in the sense +that the diagram +\begin{equation*} +\begin{tikzcd} +M\otimes M\otimes M \arrow[r,"\varphi\otimes 1"] \arrow[d,swap,"1\otimes\varphi"] & +M\otimes M \arrow[d,"\varphi"] \\ M\otimes M \arrow[r,swap,"\varphi"] & M +\end{tikzcd} +\end{equation*} +commutes. +\end{defn} + +\begin{eg} +Polynomials with coefficients in $R$ forms a graded algebra. Moreover, in the +polynomial ring $R[X]$, we find that $G_pR[X]\defeq F_pR[X]/F_{p-1}R[X]\cong R$. +Since those are free modules, we have that $R[X]\cong \bigoplus_p G_pR[X]$. +\end{eg} + +\section{Spectral sequences} + +\subsection{Motivation from the long exact sequence of a pair} + +Recall that a pair of spaces $(X,A)$ induces a long exact sequence of homology +groups +\begin{equation*} +\begin{tikzcd} +\cdots \arrow[r,"\partial_{n+1}"] +& H_n(A) \arrow[r,"i_n"] +& H_n(X) \arrow[r,"j_n"] +& H_n(X,A) \arrow[r,"\partial_n"] +& H_{n-1}(A) \arrow[r,"i_{n-1}"] +& \cdots +\end{tikzcd} +\end{equation*} +from the short exact sequence +\begin{equation*} +\begin{tikzcd} +0 \arrow[r] & C_\ast(A) \arrow[r] & C_\ast(X) \arrow[r] & C_\ast(X,A) \arrow[r] & 0 +\end{tikzcd} +\end{equation*} +of chain complexes, by means of the snake lemma. This long exact sequence helps +us to compute $H_n(X)$ in terms of $H_n(A)$ and $H_n(X,A)$, which may be easier +to determine. For instance, from the long exact sequence we obtain the short +exact sequence +\begin{equation*} +\begin{tikzcd} +0 \arrow[r] & \mathrm{coker}(\partial_{n+1}) \arrow[r] & H_n(X) \arrow[r] & \mathrm{ker}(\partial_n) \arrow[r] & 0 +\end{tikzcd} +\end{equation*} +and hence we have determined that $H_n(X)$ can be obtained as some element of the +group $\mathrm{Ext}(\mathrm{coker}(\partial_{n+1}),\mathrm{ker}(\partial_n))$. +In other words, $H_n(X)$ is a particular solution to an extension problem. + +Note also that the long exact sequence of relative homology groups can be +presented as an exact triangle of graded $R$-homomorphisms: +\begin{equation*} +\begin{tikzcd}[column sep=0em] +\bigoplus_n H_n(C_\ast(A)) +\arrow[rr,"i"] & & \bigoplus_n H_n(C_\ast(X)) \arrow[dl,"j"] \\ +& \bigoplus_n H_n(C_\ast(X,A)) \arrow[ul,"\partial"] +\end{tikzcd} +\end{equation*} + +The first idea of spectral sequences is to generalize the long exact sequence +of homology obtained from a pair of spaces, to an algebraic gadget obtained from +a filtration on a space, and mimic the derivation of determining the homology +group as a solution to an extension problem. + +\begin{defn} +A filtration of a space X consists of a sequence +\begin{equation*} +\cdots\subseteq X_p\subseteq X_{p+1}\subseteq\cdots +\end{equation*} +such that $X=\bigcup_p X_p$ and $\bigcap_p X_p=\varnothing$. A filtration of $X$ is said to be bounded, if +$X_p=\varnothing$ for $p$ sufficiently small, and $X_p=X$ for $X$ sufficiently +large. +\end{defn} + +An important class of filtered spaces is that of CW-complexes, where the filtration +$X_p$ of $X$ is given by the $p$-skeleton of $X$. Another case is where +$X_p\defeq\varnothing$ for $p<0$, $X_0\defeq A$ and $X_p\defeq X$ for $p>0$; here +we recover the old theory of the topological pair. + +\begin{defn} +Given a space $X$ with a filtration, we can form the staircase diagram +\begin{footnotesize} +\begin{equation*} +\begin{tikzcd} +& \vdots \arrow[d] & & \vdots \arrow[d] \\ +\cdots \arrow[r] +& H_{n+1}(X_p) \arrow[r] \arrow[d] +& H_{n+1}(X_p,X_{p-1}) \arrow[r] +& H_n(X_{p-1}) \arrow[r] \arrow[d] +& H_n(X_{p-1},X_{p-2}) \arrow[r] +& \cdots \\ +\cdots \arrow[r] +& H_{n+1}(X_{p+1}) \arrow[r] \arrow[d] +& H_{n+1}(X_{p+1},X_{p}) \arrow[r] +& H_n(X_{p}) \arrow[r] \arrow[d] +& H_n(X_{p},X_{p-1}) \arrow[r] +& \cdots \\ +& \vdots & & \vdots +\end{tikzcd} +\end{equation*}% +\end{footnotesize}% +in which the familiar long exact sequence of the pairs $(X_p,X_{p-1})$ run +down like a staircase. +\end{defn} + +\begin{defn} +Let $X$ be a space with a filtration. Then we obtain the exact couple +\begin{equation*} +\begin{tikzcd} +A \arrow[rr,"i"] & & A \arrow[dl,"j"] \\ +& E \arrow[ul,"\partial"] +\end{tikzcd} +\end{equation*} +in which $A\defeq\bigoplus_{p,n} H_n(X_p)$, and $E\defeq\bigoplus_{p,n}H_n(X_p,X_{p-1})$. +\end{defn} + +We can come to such an exact couple from any filtered chain complex, which is +what we turn our attention to before continuing. + +\subsection{The spectral sequence of a filtered complex} + +\begin{defn} +A filtration of an $R$-module $M$ consists of a sequence +\begin{equation*} +\cdots\subseteq F_pM\subseteq F_{p+1}M\subseteq\cdots +\end{equation*} +of $R$-submodules of $M$, such that $M=\bigcup_p F_pM$ and $\bigcap_p F_pM=0$. +A filtration of $R$ is said to be bounded if $F_pM=0$ for $p$ sufficiently +small and $F_pM=M$ for $p$ sufficiently large. +\end{defn} + +\begin{defn} +Let $\{M,F_pM\}$ be a graded $R$-module. The associated graded module is defined +by $G_p M\defeq F_pM/F_{p-1}M$. We obtain a short exact sequence +\begin{equation*} +\begin{tikzcd} +0 \arrow[r] & F_{p-1}M \arrow[r] & F_pM \arrow[r] & G_pM \arrow[r] & 0. +\end{tikzcd} +\end{equation*} +\end{defn} + +\begin{rmk} +It would be nice if $F_pM\cong F_{p-1}M\oplus G_pM$, so that we can write +$M\cong\bigoplus_p G_pM$. Under what condition does this hold? This holds if +each $G_pM$ is a projective $R$-module, so under what conditions is this true? +\end{rmk} + +\begin{defn} +A filtered chain complex is a chain complex $(C_\ast,\partial)$ together with a +filtration $\{F_pC_i\}$ of each $C_i$, such that the differential preserves the +filtration, i.e.~$\partial(F_pC_i)\subseteq F_p C_{i-1}$. + +A filtration of a chain complex is said to be bounded if it is bounded in each +dimension. +\end{defn} + +Let $(F_pC_\ast,\partial)$ be a filtered chain complex. We have again our +short exact sequence +\begin{equation*} +\begin{tikzcd} +0 \arrow[r] & F_{p-1} C_\ast \arrow[r] & F_p C_\ast \arrow[r] & G_p C_\ast \arrow[r] & 0 +\end{tikzcd} +\end{equation*} +of chain complexes. This also gives us the long exact sequence on homology, +which we may express conveniently as the exact couple +\begin{equation*} +\begin{tikzcd}[column sep=0em] +\bigoplus_{p,q} H_{p+q}(F_pC_\ast) \arrow[rr,"i"] & & \bigoplus_{p,q} H_{p+q}(F_pC_\ast) \arrow[dl,"j"] \\ +& \bigoplus_{p,q} H_{p+q}(G_p C_\ast) \arrow[ul,"k"] +\end{tikzcd} +\end{equation*} +consisting of graded $R$-homomorphisms (of which $k$ shifts in degree). + +\begin{defn} +Consider an exact couple, i.e.~a commutative triangle +\begin{equation*} +\begin{tikzcd} +A \arrow[rr,"i"] & & A \arrow[dl,"j"] \\ & E \arrow[ul,"k"] +\end{tikzcd} +\end{equation*} +of $R$-modules, which is exact at every vertex. Taking $\partial^0\defeq j\circ k$, +we see that $(\partial^0)^2=0$ by exactness. We may now form the derived exact couple +\begin{equation*} +\begin{tikzcd}[column sep=0] +\mathrm{im}(i) \arrow[rr,"i'"] & & \mathrm{im}(i) \arrow[dl,"j'"] \\ +& \frac{\mathrm{ker}(\partial)}{\mathrm{im}(\partial)} \arrow[ul,"k'"] +\end{tikzcd} +\end{equation*} +where +\begin{align*} +i'(i(a)) & \defeq i(i(a)) \\ +j'(i(a)) & \defeq [j(a)] \\ +k'([e]) & \defeq k(e) +\end{align*} +\end{defn} + +\begin{rmk} +Since quotients commute with direct sums (both are colimits), it follows that +\begin{equation*} +E'\defeq \frac{\mathrm{ker}(\partial)}{\mathrm{im}(\partial)} + \cong +\bigoplus_{p,q} \frac{\mathrm{ker}(\partial^0_{p,q})}{\mathrm{im}(\partial^0_{p,q+1})} +\end{equation*} +is a graded $R$-module. In other words, $E'$ is a direct sum of the homology +groups of the $p$-indexed family of chain complexes +\begin{equation*} +\begin{tikzcd} +\cdots \arrow[r] & E_{p,q}^0 \arrow[r,"{\partial^0_{p,q}}"] & E_{p,q-1}^0 \arrow[r] & \cdots +\end{tikzcd} +\end{equation*} +It follows that $i'$, $j'$ and $k'$ are graded +whenever $i$, $j$ and $k$ are, where $k'$ shifts down in dimension the same way +$k$ does. +\end{rmk} + +\begin{comment} +\begin{defn} +We define +\begin{equation*} +E_{p,q}^0\defeq G_pC_{p+q}\defeq F_pC_{p+1}/F_{p-1}C_{p+q}, +\end{equation*} + +Since the differential preserves the filtration, we obtain from the differentials +well-defined $R$-homomorphisms functioning as the boundary maps in the chain complex + +\end{defn} + +\begin{defn} +The homology groups +\begin{equation*} +E^1_{p,q}\defeq \mathrm{ker}(\partial^0_{p,q})/\mathrm{im}(\partial^0_{p,q+1}) +\end{equation*} +form again a chain complex, with boundary maps $\partial^1_{p,q}:E^1_{p,q}\to +E^1_{p,q-1}$. Thus, this process may be repeated indefinitely. +\end{defn} +\end{comment} + +\begin{comment} +\begin{lem} +Let $(C_\ast,\partial)$ be a filtered chain complex. Then there is a filtration +on the homology of $C_\ast$, given by +\begin{equation*} +F_pH_i(C_\ast)\defeq\{\alpha\in H_i(C_\ast)\mid \exists_{(x\in F_p C_i)}\,\alpha=[x]\}. +\end{equation*} +\end{lem} +\end{comment} + +\subsection{Convergent spectral sequences} + +\begin{defn} +A spectral sequence consists of +\begin{enumerate} +\item An $R$-module $E^r_{p,q}$ for each $p,q\in\Z$ and each $r\geq 0$. +\item Differentials $\partial_r:E^r_{p,q}\to E^r_{p-r,q+r-1}$ such that +$\partial_r^2=0$ and $E^{r+1}$ is the homology of $(E^r,\partial_r)$ +\end{enumerate} +\end{defn} + +\begin{defn} +A spectral sequence $\{E^r,\partial_r\}$ of $R$-modules is said to converge +if for every $p,q\in\Z$, one has $\partial_r=0:E^r_{p,q}\to E^r_{p-r,q+r-1}$ +for $r$ sufficiently large. +\end{defn} + +\begin{rmk} +If a spectral sequence $\{E^r,\partial_r\}$ converges, then the $R$-module +$E^r_{p,q}$ is independent of $r$ for sufficiently large $r$. +\end{rmk} + +\begin{thm} +Let $(F_pC_\ast,\partial)$ be a filtered complex. Then we obtain a spectral +sequence $(E^r_{p,q},\partial^r)$ defined for $r\geq 0$, with +\begin{equation*} +E^1_{p,q}\defeq H_{p+q}(G_pC_\ast). +\end{equation*} +This is the spectral sequence of filtered complexes. +\end{thm} + +\begin{thm} +If $(F_pC_\ast,\partial)$ is a bounded filtered complex, then the spectral +sequence converges to +\begin{equation*} +E^\infty_{p,q}\defeq G_pH_{p+q}(C_\ast). +\end{equation*} +\end{thm} + +Let $X$ be a filtered space, and let our goal be to compute the $n$-th (co)homology +group $H_n(X)$. In general, this might be a complicated task. However, it might +be easier to compute the homologies of the subcomplex $C_\ast(X_p)$, and the quotient +complex $C_\ast(X)/C_\ast(X_p)$. From this, we obtain a short exact sequence +\begin{equation*} +\begin{tikzcd} +0 \arrow[r] +& \mathrm{coker}(\delta) \arrow[r] +& H_\ast(X) \arrow[r] +& \mathrm{ker}(\delta) \arrow[r] +& 0 +\end{tikzcd} +\end{equation*} + +\subsection{The Serre spectral sequence} + +The Serre spectral sequence relates the homology of a Serre fibration to the +homology of the fibers and the base. Thus, in some cases one can compute the +homology of the fibration in terms of the homology of the fibers and the base. + +Let $\pi : X\to B$ be a fibration, with $B$ a path-connected CW-complex, and we +filter $X$ by the subspaces $X_p\defeq \pi^{-1}(B_p)$, in which $B_p$ is the +$p$-skeleton of $B$. + +\begin{lem} +The spectral sequence for homology with coefficients in $G$ associated to this +filtration of $X$ converges to $H_\ast(X;G)$. +\end{lem} + +\begin{thm} +Let $F\to X\to B$ be a fibration with $B$ path-connected. If $\pi_1(B)$ acts +trivially on $H_\ast(F;G)$, then there is a spectral sequence $\{E^r_{p,q},\partial_r\}$ +with: +\begin{enumerate} +%\item $\partial_r : E^r_{p,q}\to E^r_{p-r,q+r-1}$ and $E^{r+1}_{p,q}=\mathrm{ker}\,d_r/\mathrm{im}\,dr$. +\item the stable terms $E^\infty_{p,n-p}$ are isomorphic to $F^p_n/F^{p-1}_n$ in +a filtration $0\subseteq F^0_n\subseteq\cdots\subseteq F^n_n=H_n(X;G)$ of ... +\item $E^2_{p,q}\cong H_p(B;H_q(F;G))$. +\end{enumerate} +\end{thm} + +\part{K-theory} + +\section{Vector bundles} + +\subsection{Basic spaces} +\begin{defn} +The \define{$n$-sphere} $\Sn^n$ is the subspace of $\R^{n+1}$ consisting of unit vectors. +The \define{real projective $n$-space} $\R P^n$ is the space of lines in +$\R^{n+1}$ through the origin. Equivalently, we may regard $\R P^n$ as the quotient +space of $\Sn^n$ in which the antipodal pairs of points are identified. Notice +that $\R P^1\approx \Sn^1$. +\end{defn} + +\begin{defn} +For each $n$, we may include the $n$-sphere $\Sn^n$ into $\Sn^{n+1}$ by mapping +it into the equator. These inclusions induce inclusions $\R P^n\to \R P^{n+1}$. +We define $\R P^\infty$ to be the sequential colimit of $\R P^n$. +\end{defn} + +\subsection{Definition and basic properties} +\begin{defn} +An \define{$n$-dimensional vector bundle} is a map $p:E\to B$ together with a +real vector space structure on $p^{-1}(b)$ for each $b\in B$, satisfying the +\define{local triviality condition}, which says that there is an open cover +$\mathcal{C}$ of $B$, with homeomorphisms $h_U:p^{-1}(U)\to U\times\mathbb{R}^n$ +for each $U\in\mathcal{C}$, which maps $p^{-1}(b)$ to $\{b\}\times\mathbb{R}^n$ +for each $b\in U$. + +The functions $h_U$ are also called \define{local trivializations}. Given a +vector bundle $p:E\to B$, the space $B$ is called the \define{base space}, the +space $E$ is called the \define{total space}, and the spaces $p^{-1}(b)$ are +called the \define{fibers}. A $1$-dimensional +vector bundle is also called a \define{line bundle}. +\end{defn} + +\begin{defn} +An \define{isomorphism of vector bundles} from $p:E\to B$ to $p':E'\to B$ +consists of a map $h:E\to E'$ satisfying $p'\circ h=p$, +which induces a linear isomorphism +$p^{-1}(b)\to p'^{-1}(b)$ between each of the fibers. +\end{defn} + +\begin{lem} +If $h:E\to E'$ is an isomorphism of vector bundles, then the underlying map +of type $E\to E'$ is a homeomorphism. +\end{lem} + +\begin{proof} +Suppose $h:E\to E'$ induces isomorphisms $p^{-1}(b)\to p'^{-1}(b)$ for each +$b\in B$. Then, for each $x\in E'$ we have an isomorphism from +$p^{-1}(p'(x))$ to $p'^{-1}(p'(x))$. Since $x\in p'^{-1}(p'(x))$, we find +an element $y\in p^{-1}(p'(x))\subseteq E$. Thus, $h$ is surjective. Now suppose +that $x,x'\in E$ are two elements for which $h(x)=h(x')$. Since $p'\circ h=p$, +it follows that $x'\in p^{-1}(x)$. Now, the fact that $h$ induces an isomorphism +between fibers implies that $x=x'$. + +Thus, $h$ has an inverse function $k:E'\to E$, and we need to show that this +function is continuous. It suffices to show that $k|_U$ is continuous for each +$U$ on which $p'$ is trivial. Let $x\in B$, and compose the map +$h_U:p^{-1}(U)\to p'^{-1}(U)$ with its local trivializations. Thus, we obtain +a map $g_U:U\times\R^n\to U\times \R^n$, mapping $(x,y)$ to $(x,A(y))$, where +$A$ is a linear isomorphism. +\end{proof} + +In the following definition, we give a vector bundle by a gluing construction. + +\begin{defn} +Consider a space $B$, and an open cover $\mathcal{C}$ which is closed under +finite intersections. Then $\mathcal{C}$ may be considered a poset ordered by +inclusion. + +A \define{collection of gluing functions} consists of a continuous choice of linear +isomorphisms $g_{U,V}:U\cap V\to GL_n(\R)$ satisfying the \define{cocycle +condition} +\begin{equation*} +g_{V,W}\circ g_{U,V}=g_{U,W} +\end{equation*} +on $U\cap V\cap W$, for every +$U,V,W\in\mathcal{C}$. Such a collection of gluing functions determines a functor +$\mathcal{C}\to\mathbf{Top}$, which is given on points by $U\mapsto U\times\R^n$, +and on morphisms by $(x,v)\mapsto(x,A(v))$, for each $U\subseteq V$ determining +a linear isomorphism $A$. + +The colimit of this functor is the total space of a vector bundle. +\end{defn} + +\begin{eg} +There are lots of examples of vector bundles: +\begin{enumerate} +\item The \define{$n$-dimensional trivial bundle} over $B$ is defined to be +$\proj1:B\times\mathbb{R}^n\to B$. So the trivial bundle is the one which is +\emph{globally} trivial. We will write the $n$-dimensional trivial bundle over +$B$ as $\epsilon^n\to B$. +\item The circle may be regarded as the quotient of $[0,1]$ modulo the end points. +The \define{Mobius bundle} is the line bundle over $\Sn^1$ to have total space +$E\defeq [0,1]\times\R$, with the identifications $(0,t)\sim(1,-t)$. +\item The \define{tangent bundle} of the unit sphere $\Sn^n$, viewed as a subspace of +$\R^{n+1}$, is defined to be the subspace $E\defeq\{(x,v)\in\Sn^n\times\R^{n+1} +\mid x\perp v\}$ of $\R^{2n+2}$, which projects onto $\Sn^n$. + +The $n$-sphere is covered by $2n+2$ open hemispheres, centering at $\pm e_i$, +where $e_i\in\R^{n+1}$ is a basis vector. +\item The \define{normal bundle} of the unit sphere $\Sn^n$ is the line bundle +with $E$ consisting of pairs $(x,v)\in\Sn^n\times\R^{n+1}$ such that $v=tx$ for +some $t\in\R$. \emph{The normal bundle on $\Sn^n$ is isomorphic to the trivial line +bundle $\Sn^n\times\R\to\Sn^n$.} +\item The \define{canonical line bundle} $p:E\to \R P^n$ has as its total space +the subspace $E\subseteq \R P^{n+1}\times\R ^{n+1}$ consisting of pairs +$(l,v)$ with $v\in l$. \emph{The M\"obius line bundle is isomorphic to the +canonical line bundle on $\Sn^1$.} +\item The inclusions $\R P^n\subseteq \R P^{n+1}$ induce inclusions of the +canonical line bundles. The sequential colimit of the canonical line bundles +produces the canonical line bundle on $\R P^\infty$. +\end{enumerate} +\end{eg} + +\begin{defn} +Given two vector bundles $p:E\to B$ and $p':E'\to B$ over the same base space +$B$, we obtain a vector bundle $p\oplus p': E\oplus E'\to B$, fitting in the +pullback square +\begin{equation*} +\begin{tikzcd} +E\oplus E' \arrow[r] \arrow[d] \arrow[dr,"{p\oplus p'}" description ] & E' \arrow[d,"{p'}"] \\ +E \arrow[r,swap,"p"] & B +\end{tikzcd} +\end{equation*} +\end{defn} + +\begin{eg} +\begin{enumerate} +\item The direct sum of the tangent and normal bundles on $\Sn^n$ is the trivial +bundle $\Sn^n\times\R^{n+1}$. +\end{enumerate} +\end{eg} + +\begin{defn} +Let $p:E\to B$ and $p':E'\to B$ be two vector bundles over the same space $B$, +and choose an open cover $\mathcal{C}$ such that both $E$ and $E'$ are locally +trivial with respect to $\mathcal{C}$. We define $E\otimes E'$ by gluing. + +Then we can define, for each $U,V\in\mathcal{C}$ satisfying $U\subseteq V$, we +have linear isomorphisms $g_{U,V}(x):\R^n\to\R^n$ and $g'_{U,V}(x):\R^m\to\R^m$, +induced by the local trivializations of $E$ and $E'$ respectively. These give +gluing functions $g_{U,V}(x)\otimes g'_{U,V}(x):\R^n\otimes\R^m\to\R^n\otimes\R^m$ +for each $x\in U$, and these gluing functions satisfy the cocycle condition. + +Thus, we obtain a vector bundle $E\otimes E'$ from these gluing functions. +\end{defn} + +\begin{lem} +The tensor product of vector bundles over a fixed base space is commutative, +associative, it has an identity element (the trivial bundle), and it is +distributive with respect to direct sum. +\end{lem} + +Change of base $f:B'\to B$ turns a vector bundle $E$ over $B$ to a vector +bundle $f^\ast(E)$ over $B'$. + +\begin{lem} +For any two vector bundles $E$ and $E'$ over $B$, and any $f:B'\to B$, we have +natural isomorphisms $f^\ast(E\oplus E')\approx f^\ast(E)\oplus f^\ast(E')$, and +$f^\ast(E\otimes E')\approx f^\ast(E)\otimes f^\ast(E')$. Moreover, if $f$ +is homotopic to $g$, then $f^\ast=g^\ast$. +\end{lem} + +\subsection{K-theory} + +\begin{defn} +Two vector bundles $E\to B$ and $E'\to B$ are callec \define{stably isomorphic}, +if there is an $n$ for which $E\oplus\epsilon^n\approx E'\oplus\epsilon^n$, and +we write $E\approx_s E'$ if $E$ and $E'$ are stably isomorphic. Also, +we will define the relation $E\sim E'$ if there are $m$ and $n$ such that +$E\oplus\epsilon^m\approx E'\oplus^n$. +\end{defn} + +\begin{lem} +The direct sum preserves both $\approx_s$ and $\sim$. Moreover, if $B$ is compact, +then the set of ${\sim}$-equivalence classes of vector bundles forms an abelian +group, called $\tilde{K}(B)$. If $B$ is pointed, then the tensor product turns +$\tilde{K}(B)$ into a ring. +\end{lem} + +\begin{lem} +The direct sum satisfies the cancellation property with respect to $\approx_s$, +i.e.~we have that $E\oplus E'\approx_s E\oplus E''$ implies $E'\oplus E''$. +Thus, if we define two pairs $(E,F)$ and $(E',F')$ to be equivalent to each +other whenever $E\oplus F'=E'\oplus F$, we obtain an abelian group $K(B)$ for +any compact space $B$. The tensor product turns $K(B)$ into a ring. +\end{lem} + +\begin{lem} +We have a ring isomorphism +\begin{equation*} +K(B)\approx \tilde{K}(B)\oplus\Z. +\end{equation*} +\end{lem} + +Both $K$ and $\tilde{K}$ are contravariant functors. + +\begin{lem} +If $X$ is compact Hausdorff and $A\subseteq X$ is a closed subspace, then the +inclusion and quotient maps $A\stackrel{i}{\to}X\stackrel{q}{\to}X/A$ induces +an sequence +\begin{equation*} +\begin{tikzcd} +\tilde{K}(X/A) \arrow[r,"q^\ast"] & \tilde{K}(X) \arrow[r,"i^\ast"] & \tilde{K}(A) +\end{tikzcd} +\end{equation*} +which is exact at $\tilde{K}(X)$. +\end{lem} + +\begin{lem} +If $A$ is contractible, the quotient map $q:X\to X/A$ induces a bijection +$q^\ast:\mathrm{Vect}^n(X/A)\to\mathrm{Vect}^n(X)$. +\end{lem} + +Apparently, this gives a long exact sequence of $\tilde{K}$-groups: +\begin{equation*} +\begin{tikzcd}[column sep=small] +\cdots\arrow[r] & \tilde{K}(\Sn(X)) \arrow[r] & \tilde{K}(\Sn(A)) \arrow[r] +& \tilde{K}(X/A) \arrow[r] & \tilde{K}(X) \arrow[r] & \tilde{K}(A). +\end{tikzcd} +\end{equation*} +Still considering pointed spaces, we may consider the long exact sequence of the pair $(X\times Y, +X\vee Y)$. Recall that $(X\times Y)/(X\vee Y)$ is the smash product +$X\wedge Y$, i.e.~the smash product is the pushout of $\unit\leftarrow +X\vee Y\rightarrow X\times Y$. The long exact sequence of the pair +$(X\times Y,X\vee Y)$ looks as follows: +\begin{equation*} +\begin{tikzcd}[column sep=.8em] +\cdots\arrow[r] & \tilde{K}(\Sn(X\times Y)) \arrow[r] & \tilde{K}(\Sn(X\vee Y)) \arrow[r] +& \tilde{K}(X\wedge Y) \arrow[r] & \tilde{K}(X\times Y) \arrow[r] & \tilde{K}(X\vee Y). +\end{tikzcd} +\end{equation*} + +\subsection{Bott periodicity} + +\begin{defn} +We define an \define{external product} $\mu:K(X)\otimes K(Y)\to K(X\times Y)$, +by $\mu(a\otimes b)\defeq \proj1^\ast(a)\cdot\proj2^\ast(b)$. +\end{defn} + + +\end{document} diff --git a/Notes/preamble-articles.tex b/Notes/preamble-articles.tex new file mode 100644 index 0000000..f5d0adc --- /dev/null +++ b/Notes/preamble-articles.tex @@ -0,0 +1,508 @@ +% for type setting urls +\usepackage[hyphens]{url} % This package has to be loaded *before* hyperref +\usepackage[pagebackref,colorlinks,citecolor=darkgreen,linkcolor=darkgreen,unicode]{hyperref} +\usepackage[english]{babel} + +%%% Because Germans have umlauts and Slavs have even stranger ways of mangling letters +\usepackage[utf8]{inputenc} + +%%% Multi-Columns for long lists of names +\usepackage{multicol} + +%%% Set the fonts +\usepackage{mathpazo} +\usepackage[scaled=0.95]{helvet} +\usepackage{courier} +\linespread{1.05} % Palatino looks better with this + +\usepackage{graphicx} +\usepackage{comment} + +%\usepackage{wallpaper} % For the background image on the cover page +%\usepackage{geometry} % For the cover page +\usepackage{fancyhdr} % To set headers and footers + +\usepackage{ifthen} +\usepackage{amssymb,amsmath,amsthm,stmaryrd,mathrsfs,wasysym} +\usepackage{enumitem,mathtools,xspace,xcolor} +\definecolor{darkgreen}{rgb}{0,0.45,0} +\usepackage{aliascnt} +\usepackage[capitalize]{cleveref} +%\usepackage[all,2cell]{xy} +%\UseAllTwocells +% \usepackage{natbib} +\usepackage{braket} % used for \setof{ ... } macro +\usepackage{tikz-cd} +\usepackage{tikz} +\usetikzlibrary{decorations.pathmorphing} +\usepackage[inference]{semantic} +\usepackage{booktabs} + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%% To include references in TOC we should use this package rather than a hack. +\usepackage{tocbibind} +%\usepackage{etoolbox} % get \apptocmd +%\apptocmd{\thebibliography}{\addcontentsline{toc}{section}{References}}{}{} % tell bibliography to get itself into the table of contents + + +\begin{comment} +%%%% Header and footers +\pagestyle{fancyplain} +\setlength{\headheight}{15pt} +\renewcommand{\chaptermark}[1]{\markboth{\textsc{Chapter \thechapter. #1}}{}} +\renewcommand{\sectionmark}[1]{\markright{\textsc{\thesection\ #1}}} +\end{comment} + +% TOC depth +\setcounter{tocdepth}{2} + +\lhead[\fancyplain{}{{\thepage}}]% + {\fancyplain{}{\nouppercase{\rightmark}}} +\rhead[\fancyplain{}{\nouppercase{\leftmark}}]% + {\fancyplain{}{\thepage}} +\cfoot{\textsc{\footnotesize [Draft of \today]}} +\lfoot[]{} +\rfoot[]{} + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%%%% We mostly use the macros of the book, to keep notations +%%%% and conventions the same. Recall that when the macros file +%%%% is updated, we need to comment the lines containing the +%%%% string `[chapter]` since our article is not a book. +%%%% +%%%% Instructions for updating the macros.tex file: +%%%% - fetch the latest macros.tex file from the HoTT/book git repository. +%%%% - comment all lines containing "[chapter]" because this is not a book. +%%%% - comment the definition of pbcorner because the xypic package is not used. +%%%% +\input{macros} + +\newcommand{\idsymbin}{=} + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%%%% Our commands which are not part of the macros.tex file. +%%%% We should keep these commands separate, because we will +%%%% update the macros.tex following the updates of the book. + +%%%% First we redefine the \id, \eqv and \ct commands so that they accept an +%%%% arbitrary number of arguments. This is useful when writing longer strings +%%%% of equalities or equivalences. + +\makeatletter + +\renewcommand{\id}[3][]{ + \@ifnextchar\bgroup + {#2 \mathbin{\idsym_{#1}} \id[#1]{#3}} + {#2 \mathbin{\idsym_{#1}} #3} + } + +\renewcommand{\eqv}[2]{ + \@ifnextchar\bgroup + {#1 \eqvsym \eqv{#2}} + {#1 \eqvsym #2} + } + +\newcommand{\ctsym}{% + \mathchoice{\mathbin{\raisebox{0.5ex}{$\displaystyle\centerdot$}}}% + {\mathbin{\raisebox{0.5ex}{$\centerdot$}}}% + {\mathbin{\raisebox{0.25ex}{$\scriptstyle\,\centerdot\,$}}}% + {\mathbin{\raisebox{0.1ex}{$\scriptscriptstyle\,\centerdot\,$}}} + } + +\renewcommand{\ct}[3][]{ + \@ifnextchar\bgroup + {#2 \mathbin{\ctsym_{#1}} \ct[#1]{#3}} + {#2 \mathbin{\ctsym_{#1}} #3} + } + +\makeatother + +%%%% We always use textstyle products and sums... +%\renewcommand{\prd}{\tprd} +%\renewcommand{\sm}{\tsm} +\makeatletter +\renewcommand{\@dprd}{\@tprd} +\renewcommand{\@dsm}{\@tsm} +\renewcommand{\@dprd@noparens}{\@tprd} +\renewcommand{\@dsm@noparens}{\@tsm} + +%%%% ...with a bit more spacing +\renewcommand{\@tprd}[1]{\mathchoice{{\textstyle\prod_{(#1)}\,}}{\prod_{(#1)}\,}{\prod_{(#1)}\,}{\prod_{(#1)}\,}} +\renewcommand{\@tsm}[1]{\mathchoice{{\textstyle\sum_{(#1)}\,}}{\sum_{(#1)}\,}{\sum_{(#1)}\,}{\sum_{(#1)}\,}} + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%%%% We adjust the \prd command so that implicit arguments become possible. +%%%% +%%%% First, we have the following switch. Set it to true if implicit arguments +%%%% are desired, or to false if not. Note turning off implicit arguments +%%%% might render some parts of the text harder to comprehend, since in the +%%%% text might appear $f(x)$ where we would have $f(i,x)$ without implicit +%%%% arguments. + +\newcommand{\implicitargumentson}{\boolean{true}} + +%%%% If one wants to use implicit arguments in the notation for product types, +%%%% a * has to be put before the argument that has to be implicit. +%%%% For example: in $\prd{x:A}*{y:B}{u:P(y)}Q(x,y,u)$, the argument y is +%%%% implicit. Any of the arguments can be made implicit this way. + +%%%% First of all, we should make the command \prd search not only for a +%%%% brace, but also for a star. We introduce an auxiliary command that +%%%% determines whether the next character is a star or brace. +\newcommand{\@ifnextchar@starorbrace}[2] +% {\@ifnextcharamong{#1}{#2}{*}{\bgroup};} + {\@ifnextchar*{#1}{\@ifnextchar\bgroup{#1}{#2}}} + +%%%% When encountering the \prd command, latex should determine whether it +%%%% should print implicit argument brackets or not. So the first branching +%%%% happens right here. +\renewcommand{\prd}{\@ifnextchar*{\@iprd}{\@prd}} + +\newcommand{\@prd}[1] + {\@ifnextchar@starorbrace + {\prd@parens{#1}} + {\@ifnextchar\sm{\prd@parens{#1}\@eatsm}{\prd@noparens{#1}}}} +\newcommand{\@prd@parens}{\@ifnextchar*{\@iprd}{\prd@parens}} +\renewcommand{\prd@parens}[1] + {\@ifnextchar@starorbrace + {\@theprd{#1}\@prd@parens} + {\@ifnextchar\sm{\@theprd{#1}\@eatsm}{\@theprd{#1}}}} +\newcommand{\@theprd}[1] + {\mathchoice{\@dprd{#1}}{\@tprd{#1}}{\@tprd{#1}}{\@tprd{#1}}} +\renewcommand{\dprd}[1]{\@dprd{#1}\@ifnextchar@starorbrace{\dprd}{}} +\renewcommand{\tprd}[1]{\@tprd{#1}\@ifnextchar@starorbrace{\tprd}{}} + +%%%% Here we tell the actual symbols to be printed. +\newcommand{\@theiprd}[1]{\mathchoice{\@diprd{#1}}{\@tiprd{#1}}{\@tiprd{#1}}{\@tiprd{#1}}} +\newcommand{\@iprd}[2]{\@ifnextchar@starorbrace% + {\@theiprd{#2}\@prd@parens}% + {\@ifnextchar\sm% + {\@theiprd{#2}\@eatsm}% + {\@theiprd{#2}}}} +\def\@tiprd#1{ + \ifthenelse{\implicitargumentson} + {\@@tiprd{#1}\@ifnextchar\bgroup{\@tiprd}{}} + {\@tprd{#1}}} +\def\@@tiprd#1{\mathchoice{{\textstyle\prod_{\{#1\}}\,}}{\prod_{\{#1\}}\,}{\prod_{\{#1\}}\,}{\prod_{\{#1\}}\,}} +\def\@diprd{ + \ifthenelse{\implicitargumentson} + {\@tiprd} + {\@tprd}} + + +%%%% And finally we need to redefine \@eatprd so that implicit arguments also +%%%% works in the scope of a dependent sum. +\def\@eatprd\prd{\@prd@parens} + +\makeatother + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%%%% Redefining the quantifiers, so that some of the longer +%%%% formulas appear one a single line without problems + +%%% Dependent products written with \forall, in the same style +\makeatletter +\def\tfall#1{\forall_{(#1)}\@ifnextchar\bgroup{\,\tfall}{\,}} +\renewcommand{\fall}{\tfall} + +%%% Existential quantifier %%% +\def\texis#1{\exists_{(#1)}\@ifnextchar\bgroup{\,\texis}{\,}} +\renewcommand{\exis}{\texis} + +%%% Unique existence %%% +\def\uexis#1{\exists!_{(#1)}\@ifnextchar\bgroup{\,\uexis}{\,}} +\makeatother +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +%%%% Introducing logical usage of fonts. +\newcommand{\modelfont}{\mathit} % use 'mf' in command to indicate model font +\newcommand{\typefont}{\mathsf} % use 'tf' in command to indicate type font +\newcommand{\catfont}{\mathrm} % use 'cf' in command to indicate cat font + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%%%% Some macros of the book are redefined. + +\renewcommand{\UU}{\typefont{U}} +\renewcommand{\isequiv}{\typefont{isEquiv}} +\renewcommand{\happly}{\typefont{hApply}} +\renewcommand{\pairr}[1]{{\mathopen{}\langle #1\rangle\mathclose{}}} +\renewcommand{\type}{\typefont{Type}} +\renewcommand{\op}[1]{{{#1}^\typefont{op}}} +\renewcommand{\susp}{\typefont{\Sigma}} + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%%%% The following is a big unorganized list of new macros that we use in the +%%%% notes. + +\newcommand{\mfM}{\modelfont{M}} +\newcommand{\mfN}{\modelfont{N}} +\newcommand{\tfctx}{\typefont{ctx}} +\newcommand{\mftypfunc}[1]{{\modelfont{typ}^{#1}}} +\newcommand{\mftyp}[2]{{\mftypfunc{#1}(#2)}} +\newcommand{\tftypfunc}[1]{{\typefont{typ}^{#1}}} +\newcommand{\tftyp}[2]{{\tftypfunc{#1}(#2)}} +\newcommand{\hfibfunc}[1]{\typefont{fib}_{#1}} +\newcommand{\mappingcone}[1]{\mathcal{C}_{#1}} +\newcommand{\equifib}{\typefont{equiFib}} +\newcommand{\tfcolim}{\typefont{colim}} +\newcommand{\tflim}{\typefont{lim}} +\newcommand{\tfdiag}{\typefont{diag}} +\newcommand{\tfGraph}{\typefont{Graph}} +\newcommand{\mfGraph}{\modelfont{Graph}} +\newcommand{\unitGraph}{\unit^\mfGraph} +\newcommand{\UUGraph}{\UU^\mfGraph} +\newcommand{\tfrGraph}{\typefont{rGraph}} +\newcommand{\mfrGraph}{\modelfont{rGraph}} +\newcommand{\isfunction}{\typefont{isFunction}} +\newcommand{\tfconst}{\typefont{const}} +\newcommand{\conemap}{\typefont{coneMap}} +\newcommand{\coconemap}{\typefont{coconeMap}} +\newcommand{\tflimits}{\typefont{limits}} +\newcommand{\tfcolimits}{\typefont{colimits}} +\newcommand{\islimiting}{\typefont{isLimiting}} +\newcommand{\iscolimiting}{\typefont{isColimiting}} +\newcommand{\islimit}{\typefont{isLimit}} +\newcommand{\iscolimit}{\typefont{iscolimit}} +\newcommand{\pbcone}{\typefont{cone_{pb}}} +\newcommand{\tfinj}{\typefont{inj}} +\newcommand{\tfsurj}{\typefont{surj}} +\newcommand{\tfepi}{\typefont{epi}} +\newcommand{\tftop}{\typefont{top}} +\newcommand{\sbrck}[1]{\Vert #1\Vert} +\newcommand{\strunc}[2]{\Vert #2\Vert_{#1}} +\newcommand{\gobjclass}{{\typefont{U}^\mfGraph}} +\newcommand{\gcharmap}{\typefont{fib}} +\newcommand{\diagclass}{\typefont{T}} +\newcommand{\opdiagclass}{\op{\diagclass}} +\newcommand{\equifibclass}{\diagclass^{\eqv{}{}}} +\newcommand{\universe}{\typefont{U}} +\newcommand{\catid}[1]{{\catfont{id}_{#1}}} +\newcommand{\isleftfib}{\typefont{isLeftFib}} +\newcommand{\isrightfib}{\typefont{isRightFib}} +\newcommand{\leftLiftings}{\typefont{leftLiftings}} +\newcommand{\rightLiftings}{\typefont{rightLiftings}} +\newcommand{\psh}{\typefont{Psh}} +\newcommand{\rgclass}{\typefont{\Omega^{RG}}} +\newcommand{\terms}[2][]{\lfloor #2 \rfloor^{#1}} +\newcommand{\grconstr}[2] + {\mathchoice % max size is textstyle size. + {{\textstyle \int_{#1}}#2}% + {\int_{#1}#2}% + {\int_{#1}#2}% + {\int_{#1}#2}} +\newcommand{\ctxhom}[3][]{\typefont{hom}_{#1}(#2,#3)} +\newcommand{\graphcharmapfunc}[1]{\gcharmap_{#1}} +\newcommand{\graphcharmap}[2][]{\graphcharmapfunc{#1}(#2)} +\newcommand{\tfexp}[1]{\typefont{exp}_{#1}} +\newcommand{\tffamfunc}{\typefont{fam}} +\newcommand{\tffam}[1]{\tffamfunc(#1)} +\newcommand{\tfev}{\typefont{ev}} +\newcommand{\tfcomp}{\typefont{comp}} +\newcommand{\isDec}[1]{\typefont{isDecidable}(#1)} +\newcommand{\smal}{\mathcal{S}} +\renewcommand{\modal}{{\ensuremath{\ocircle}}} +\newcommand{\eqrel}{\typefont{EqRel}} +\newcommand{\piw}{\ensuremath{\Pi\typefont{W}}} %% to be used in conjunction with -pretopos. +\renewcommand{\sslash}{/\!\!/} +\newcommand{\mprd}[2]{\Pi(#1,#2)} +\newcommand{\msm}[2]{\Sigma(#1,#2)} +\newcommand{\midt}[1]{\idvartype_#1} +\newcommand{\reflf}[1]{\typefont{refl}^{#1}} +\newcommand{\tfJ}{\typefont{J}} +\newcommand{\tftrans}{\typefont{trans}} + +\newcommand{\tfT}{\typefont{T}} +\newcommand{\reflsym}{{\mathsf{refl}}} +\newcommand{\strans}[2]{\ensuremath{{#1}_{*}({#2})}} + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%%%% JUDGMENTS +%%%% +%%%% Below we define several commands for the judgments of type theory. There +%%%% are commands +%%%% * \jctx for the judgment that something is a context. +%%%% * \jctxeq for the judgment that two contexts are the same +%%%% * \jtype for the judgment that something is a type in a context +%%%% * \jtypeeq for the judgment that two types in the same context are the same +%%%% * \jterm for the judgment that something is a term of a type in a context +%%%% * \jtermeq for the judgment that two terms of the same type are the same + +\makeatletter +\newcommand{\jctx}{\@ifnextchar*{\@jctxAlignTrue}{\@jctxAlignFalse}} +\newcommand{\@jctxAlignTrue}[2]{& \vdash #2~ctx} +\newcommand{\@jctxAlignFalse}[1]{\vdash #1~ctx} + +\newcommand{\jtype}{\@ifnextchar*{\@jtypeAlignTrue}{\@jtypeAlignFalse}} +\newcommand{\@jtypeAlignFalse}[2]{#1\vdash #2~type} +\newcommand{\@jtypeAlignTrue}[3]{#2 & \vdash #3~type} + +\newcommand{\jtermc}{\@ifnextchar*{\@jtermcAlignTrue}{\@jtermcAlignFalse}} +\newcommand{\@jtermcAlignTrue}[3]{ & \vdash #3:#2} +\newcommand{\@jtermcAlignFalse}[2]{\vdash #2:#1} + +\newcommand{\jtermt}{\@ifnextchar*{\@jtermtAlignTrue}{\@jtermtAlignFalse}} +\newcommand{\@jtermtAlignTrue}[4]{#2 & \vdash #4:#3} +\newcommand{\@jtermtAlignFalse}[3]{#1 \vdash #3:#2} + +\newcommand{\jctxeq}{\@ifnextchar*{\@jctxeqAlignTrue}{\@jctxeqAlignFalse}} +\newcommand{\@jctxeqAlignTrue}[3]{& \vdash #2\jdeq #3~ctx} +\newcommand{\@jctxeqAlignFalse}[2]{\vdash #1\jdeq #2~ctx} + +\newcommand{\jtypeeq}{\@ifnextchar*{\@jtypeeqAlignTrue}{\@jtypeeqAlignFalse}} +\newcommand{\@jtypeeqAlignTrue}[4]{#2 & \vdash #3\jdeq #4~type} +\newcommand{\@jtypeeqAlignFalse}[3]{#1\vdash #2\jdeq #3~type} + +\newcommand{\jtermceq}{\@ifnextchar*{\@jtermceqAlignTrue}{\@jtermceqAlignFalse}} +\newcommand{\@jtermceqAlignTrue}[4]{& \vdash #3\jdeq #4:#2} +\newcommand{\@jtermceqAlignFalse}[3]{\vdash #2\jdeq #3:#1} + +\newcommand{\jtermteq}{\@ifnextchar*{\@jtermteqAlignTrue}{\@jtermteqAlignFalse}} +\newcommand{\@jtermteqAlignTrue}[5]{#2 & \vdash #4\jdeq #5:#3} +\newcommand{\@jtermteqAlignFalse}[4]{#1\vdash #3\jdeq #4:#2} +\makeatother + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%%%% Often we shall need to display lists of inference rules. This environment +%%%% adjusts the array environment so that there is enough vertical space +%%%% between two inference rules +%%%% +%%%% bug: there's two much space above the array. + +\newenvironment{infarray}[1]{\begingroup\renewcommand*{\arraystretch}{3} +\begin{equation*} +\begin{array}{#1}}{ +\end{array} +\end{equation*} +\endgroup} + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%%%% CONTEXT EXTENSION +%%%% +%%%% explicit context extension notation which we will use only rarely + +\newcommand{\tfext}{\typefont{ext}} + +%%%% The context extension command. +%%%% +%%%% To get a feeling of how the command works, here are a few examples. +%%%% \ctxext{A}{B} will print A.B +%%%% \ctxext{{A}{B}}{C} will print (A.B).C +%%%% \ctxext{{{A}{B}}{C}}{{D}{E}} will print ((A.B).C).(D.E) + +\makeatletter +\newcommand{\ctxext}[2]{\@ctxext@ctx #1.\@ctxext@type #2} +\newcommand{\@ctxext}{\@ifnextchar\bgroup{\@@ctxext}{}} +\newcommand{\@ctxext@ctx}{\@ifnextchar\ctxext{\@ctxext@nested}{\@ifnextchar\ctxwk{\@ctxwk@nested}{\@ctxext}}} +\newcommand{\@ctxext@type}{\@ifnextchar\ctxext{\@ctxext@nested}{\@ifnextchar\subst{\@subst@nested}{\@ctxext}}} +\newcommand{\@@ctxext}[1]{\@ifnextchar\bgroup{\@ctxext@parens{#1}}{#1}} +\newcommand{\@ctxext@parens}[2]{(\ctxext{#1}{#2})} +\newcommand{\@ctxext@nested}[3]{\@ctxext@parens{#2}{#3}} +\makeatother + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%%%% SUBSTITUTION + +\newcommand{\tfsubst}{\typefont{subst}} + +%%%% The substitution command will act the following way +%%%% +%%%% \subst{x}{P} will print P[x] +%%%% \subst{x}{{f}{Q}} will print Q[f][x] +%%%% \subst{{x}{f}}{{x}{Q}} will print Q[x][f[x]] + +\makeatletter +\newcommand{\subst}[2]{\@subst@type #2[\@subst@term #1]} +\newcommand{\@subst}{\@ifnextchar\bgroup{\@@subst}{}} +\newcommand{\@@subst}[1]{\@ifnextchar\bgroup{\subst{#1}}{#1}} +\newcommand{\@subst@term}{\@subst} +\newcommand{\@subst@type}{\@ifnextchar\ctxext{\@ctxext@nested}{\@ifnextchar\ctxwk{\@ctxwk@nested}{\@subst}}} +\newcommand{\@subst@nested}[3]{\@subst@parens{#2}{#3}} +\newcommand{\@subst@parens}[2]{(\subst{#1}{#2})} +\makeatother + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%%%% WEAKENING + +\newcommand{\tfwk}{\typefont{wk}} + +%%%% The weakening command is very much like the substitution command. + +\makeatletter +\newcommand{\ctxwk}[2]{\langle\@ctxwk@act #1\rangle\@ctxwk@pass #2} +\newcommand{\@ctxwk}{\@ifnextchar\bgroup{\@@ctxwk}{}} +\newcommand{\@@ctxwk}[1]{\@ifnextchar\bgroup{\ctxwk{#1}}{#1}} +\newcommand{\@ctxwk@act}{\@ctxwk} +\newcommand{\@ctxwk@pass}{\@ifnextchar\ctxext{\@ctxext@nested}{\@ifnextchar\subst{\@subst@nested}{\@ctxwk}}} +\newcommand{\@ctxwk@parens}[2]{(\ctxwk{#1}{#2})} +\newcommand{\@ctxwk@nested}[3]{\@ctxwk@parens{#2}{#3}} +\makeatother + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%%%% When investigation pointed structures we use the \pt macro. + +\makeatletter +\newcommand{\pt}[1][]{*_{ + \@ifnextchar\undergraph{\@undergraph@nested} + {\@ifnextchar\underovergraph{\@underovergraph@nested}{}}#1}} +\makeatother + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%%%% OPERATIONS ON GRAPHS +%%%% +%%%% First of all, each graph has a type of vertices and a type of edges. The +%%%% type of vertices of a graph $\Gamma$ is denoted by $\pts{\Gamma}$; +%%%% and likewise for the type of edges. + +\makeatletter +\newcommand{\pts}[1]{{\@graphop@nested{#1}}_{0}} +\newcommand{\edg}[1]{{\@graphop@nested{#1}}_{1}} +\newcommand{\@graphop@nested}[1] + {\@ifnextchar\ctxext{\@ctxext@nested} + {\@ifnextchar\undergraph{\@undergraph@nested} + {\@ifnextchar\underovergraph{\@underovergraph@nested}{}}} + #1} +\makeatother + +%%%% The following operations of \undergraph and \underovergraph are used to +%%%% define the free category and the free groupoid of a graph, respectively + +\makeatletter +\newcommand{\@undergraphtest}[2]{\@ifnextchar({#1}{#2}} +\newcommand{\undergraph}[2]{\@undergraphtest{\@undergraph@parens{#1}{#2}}{\@undergraph{#1}{#2}}} +\newcommand{\@undergraph}[2]{{#2/#1}} +\newcommand{\@undergraph@nested}[3]{\@undergraph@parens{#2}{#3}} +\newcommand{\@undergraph@parens}[2]{(\@undergraph{#1}{#2})} +\makeatother + +\makeatletter +\newcommand{\underovergraph}[2]{\@underovergraphtest{\@underovergraph@parens{#1}{#2}}{\@underovergraph{#1}{#2}}} +\newcommand{\@underovergraph}[2]{{#2}\,{\parallel}\,{#1}} +\newcommand{\@underovergraphtest}{\@undergraphtest} +\newcommand{\@underovergraph@parens}[2]{(\@underovergraph{#1}{#2})} +\newcommand{\@underovergraph@nested}[3]{\@underovergraph@parens{#2}{#3}} +\makeatother + +\newcommand{\graphid}[1]{\mathrm{id}_{#1}} +\newcommand{\freecat}[1]{\mathcal{C}(#1)} +\newcommand{\freegrpd}[1]{\mathcal{G}(#1)} + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%% Some tikz macros to typeset diagrams uniformly. + +\tikzset{patharrow/.style={double,double equal sign distance,-,font=\scriptsize}} +\tikzset{description/.style={fill=white,inner sep=2pt}} + +%% Used for extra wide diagrams, e.g. when the label is too large otherwise. +\tikzset{commutative diagrams/column sep/Huge/.initial=18ex} + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%%%% New theorem environment for conjectures. + +\defthm{conj}{Conjecture}{Conjectures} + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%%%% The following environment for desiderata should not be there. It is better +%%%% to use the issue tracker for desiderata. + +\newenvironment{desiderata}{\begingroup\color{blue}\textbf{Desiderata.}} +{\endgroup}