remove incoherent homotopies, we should use families of pointed homotopies instead.
Also improve performance a bit
This commit is contained in:
parent
ead933e0a9
commit
5e27ef6c3e
1 changed files with 6 additions and 23 deletions
|
@ -438,20 +438,6 @@ namespace spectrum
|
|||
exact pwhisker_left_refl _ _,
|
||||
end
|
||||
|
||||
-- incoherent homotopies. this is a bit gross, but
|
||||
-- a) we don't need the higher coherences for most basic things
|
||||
-- (you need it for higher algebra, e.g. power operations)
|
||||
-- b) homotopies of maps between spectra are really hard
|
||||
|
||||
/- TODO: change this to sequences of pointed homotopies -/
|
||||
structure shomotopy_incoh {N : succ_str} {E F : gen_prespectrum N} (f g : E →ₛ F) :=
|
||||
(to_phomotopy : Πn, f n ~* g n)
|
||||
|
||||
infix ` ~ₛi `:50 := shomotopy_incoh
|
||||
|
||||
definition shomotopy_to_incoh [coercion] {N : succ_str} {E F : gen_prespectrum N} {f g : E →ₛ F} (p : f ~ₛ g) : shomotopy_incoh f g :=
|
||||
shomotopy_incoh.mk (λn, (shomotopy.to_phomotopy p) n)
|
||||
|
||||
------------------------------
|
||||
-- Equivalences of prespectra
|
||||
------------------------------
|
||||
|
@ -593,11 +579,11 @@ namespace spectrum
|
|||
|
||||
definition shomotopy_group_fun (n : ℤ) {E F : spectrum} (f : E →ₛ F) :
|
||||
πₛ[n] E →g πₛ[n] F :=
|
||||
π→g[2] (f (2 - n))
|
||||
proof π→g[2] (f (2 - n)) qed
|
||||
|
||||
definition shomotopy_group_isomorphism_of_pequiv (n : ℤ) {E F : spectrum} (f : Πn, E n ≃* F n) :
|
||||
πₛ[n] E ≃g πₛ[n] F :=
|
||||
homotopy_group_isomorphism_of_pequiv 1 (f (2 - n))
|
||||
proof homotopy_group_isomorphism_of_pequiv 1 (f (2 - n)) qed
|
||||
|
||||
definition shomotopy_group_isomorphism_of_pequiv_nat (n : ℕ) {E F : spectrum}
|
||||
(f : Πn, E n ≃* F n) : πₛ[n] E ≃g πₛ[n] F :=
|
||||
|
@ -605,13 +591,6 @@ namespace spectrum
|
|||
|
||||
notation `πₛ→[`:95 n:0 `]`:0 := shomotopy_group_fun n
|
||||
|
||||
-- what an awful name
|
||||
definition shomotopy_group_fun_shomotopy_incoh {E F : spectrum} {f g : E →ₛ F} (n : ℤ) (p : f ~ₛi g) : πₛ→[n] f ~ πₛ→[n] g :=
|
||||
begin
|
||||
refine homotopy_group_functor_phomotopy 2 _,
|
||||
exact (shomotopy_incoh.to_phomotopy p) (2 - n)
|
||||
end
|
||||
|
||||
/- properties about homotopy groups -/
|
||||
definition equiv_glue_neg (X : spectrum) (n : ℤ) : X (2 - succ n) ≃* Ω (X (2 - n)) :=
|
||||
have H : succ (2 - succ n) = 2 - n, from ap succ !sub_sub⁻¹ ⬝ sub_add_cancel (2-n) 1,
|
||||
|
@ -649,6 +628,7 @@ namespace spectrum
|
|||
|
||||
definition homotopy_group_spectrum_irrel {n m : ℤ} {l k : ℕ} (E : spectrum) (p : n + l = m + k)
|
||||
[Hk : is_succ k] [Hl : is_succ l] : πg[k] (E n) ≃g πg[l] (E m) :=
|
||||
proof
|
||||
have Πa b c : ℤ, a + (b + c) = c + (b + a), from λa b c,
|
||||
!add.assoc⁻¹ ⬝ add.comm (a + b) c ⬝ ap (λx, c + x) (add.comm a b),
|
||||
have n + 1 = m + 1 - l + k, from
|
||||
|
@ -656,6 +636,7 @@ namespace spectrum
|
|||
ap (λx, m + x) (this k (-l) 1) ⬝ !add.assoc⁻¹ ⬝ !add.assoc⁻¹,
|
||||
homotopy_group_spectrum_irrel_one E this ⬝g
|
||||
(homotopy_group_spectrum_irrel_one E (sub_add_cancel (m+1) l)⁻¹)⁻¹ᵍ
|
||||
qed
|
||||
|
||||
definition shomotopy_group_isomorphism_homotopy_group {n m : ℤ} {l : ℕ} (E : spectrum) (p : n + m = l)
|
||||
[H : is_succ l] : πₛ[n] E ≃g πg[l] (E m) :=
|
||||
|
@ -759,6 +740,7 @@ namespace spectrum
|
|||
|
||||
definition pshomotopy_group_fun (n : ℤ) {E F : prespectrum} (f : E →ₛ F) :
|
||||
πₚₛ[n] E →g πₚₛ[n] F :=
|
||||
proof
|
||||
group.seq_colim_functor (λk, π→g[k+2] (f (-n - 2 +[ℤ] k)))
|
||||
begin
|
||||
intro k,
|
||||
|
@ -769,6 +751,7 @@ namespace spectrum
|
|||
note rect := sq1 ⬝htyh sq4 ⬝htyh sq3,
|
||||
exact sorry --sq1 ⬝htyh sq4 ⬝htyh sq3,
|
||||
end
|
||||
qed
|
||||
|
||||
notation `πₚₛ→[`:95 n:0 `]`:0 := pshomotopy_group_fun n
|
||||
|
||||
|
|
Loading…
Reference in a new issue