Seal several definitions as theorems.
This commit is contained in:
parent
18ee7ce410
commit
5fdc8ad2c8
1 changed files with 3 additions and 3 deletions
|
@ -24,12 +24,12 @@ namespace homology
|
||||||
parameter (theory : homology_theory)
|
parameter (theory : homology_theory)
|
||||||
open homology_theory
|
open homology_theory
|
||||||
|
|
||||||
definition HH_base_indep (n : ℤ) {A : Type} (a b : A)
|
theorem HH_base_indep (n : ℤ) {A : Type} (a b : A)
|
||||||
: HH theory n (pType.mk A a) ≃g HH theory n (pType.mk A b) :=
|
: HH theory n (pType.mk A a) ≃g HH theory n (pType.mk A b) :=
|
||||||
calc HH theory n (pType.mk A a) ≃g HH theory (int.succ n) (psusp A) : by exact (Hsusp theory n (pType.mk A a)) ⁻¹ᵍ
|
calc HH theory n (pType.mk A a) ≃g HH theory (int.succ n) (psusp A) : by exact (Hsusp theory n (pType.mk A a)) ⁻¹ᵍ
|
||||||
... ≃g HH theory n (pType.mk A b) : by exact Hsusp theory n (pType.mk A b)
|
... ≃g HH theory n (pType.mk A b) : by exact Hsusp theory n (pType.mk A b)
|
||||||
|
|
||||||
definition Hh_homotopy' (n : ℤ) {A B : Type*} (f : A → B) (p q : f pt = pt)
|
theorem Hh_homotopy' (n : ℤ) {A B : Type*} (f : A → B) (p q : f pt = pt)
|
||||||
: Hh theory n (pmap.mk f p) ~ Hh theory n (pmap.mk f q) := λ x,
|
: Hh theory n (pmap.mk f p) ~ Hh theory n (pmap.mk f q) := λ x,
|
||||||
calc Hh theory n (pmap.mk f p) x
|
calc Hh theory n (pmap.mk f p) x
|
||||||
= Hh theory n (pmap.mk f p) (Hsusp theory n A ((Hsusp theory n A)⁻¹ᵍ x))
|
= Hh theory n (pmap.mk f p) (Hsusp theory n A ((Hsusp theory n A)⁻¹ᵍ x))
|
||||||
|
@ -41,7 +41,7 @@ namespace homology
|
||||||
... = Hh theory n (pmap.mk f q) x
|
... = Hh theory n (pmap.mk f q) x
|
||||||
: by exact ap (Hh theory n (pmap.mk f q)) (equiv.to_right_inv (equiv_of_isomorphism (Hsusp theory n A)) x)
|
: by exact ap (Hh theory n (pmap.mk f q)) (equiv.to_right_inv (equiv_of_isomorphism (Hsusp theory n A)) x)
|
||||||
|
|
||||||
definition Hh_homotopy (n : ℤ) {A B : Type*} (f g : A →* B) (h : f ~ g) : Hh theory n f ~ Hh theory n g := λ x,
|
theorem Hh_homotopy (n : ℤ) {A B : Type*} (f g : A →* B) (h : f ~ g) : Hh theory n f ~ Hh theory n g := λ x,
|
||||||
calc Hh theory n f x
|
calc Hh theory n f x
|
||||||
= Hh theory n (pmap.mk f (respect_pt f)) x : by exact ap (λ f, Hh theory n f x) (pmap.eta f)⁻¹
|
= Hh theory n (pmap.mk f (respect_pt f)) x : by exact ap (λ f, Hh theory n f x) (pmap.eta f)⁻¹
|
||||||
... = Hh theory n (pmap.mk f (h pt ⬝ respect_pt g)) x : by exact Hh_homotopy' n f (respect_pt f) (h pt ⬝ respect_pt g) x
|
... = Hh theory n (pmap.mk f (h pt ⬝ respect_pt g)) x : by exact Hh_homotopy' n f (respect_pt f) (h pt ⬝ respect_pt g) x
|
||||||
|
|
Loading…
Reference in a new issue