Add HH_base_indep.
This commit is contained in:
parent
e2a12f7db7
commit
61c9f175d3
1 changed files with 26 additions and 14 deletions
|
@ -20,4 +20,16 @@ structure homology_theory.{u} : Type.{u+1} :=
|
||||||
(Hadditive : Π(n : ℤ) {I : Set.{u}} (X : I → Type*), is_equiv (
|
(Hadditive : Π(n : ℤ) {I : Set.{u}} (X : I → Type*), is_equiv (
|
||||||
dirsum_elim (λi, Hh n (pinl i)) : dirsum (λi, HH n (X i)) → HH n (⋁ X))
|
dirsum_elim (λi, Hh n (pinl i)) : dirsum (λi, HH n (X i)) → HH n (⋁ X))
|
||||||
)
|
)
|
||||||
|
|
||||||
|
section
|
||||||
|
parameter (theory : homology_theory)
|
||||||
|
open homology_theory
|
||||||
|
|
||||||
|
definition HH_base_indep (n : ℤ) {A : Type} (a b : A)
|
||||||
|
: HH theory n (pType.mk A a) ≃g HH theory n (pType.mk A b) :=
|
||||||
|
calc HH theory n (pType.mk A a) ≃g HH theory (int.succ n) (psusp A) : by exact (Hsusp theory n (pType.mk A a)) ⁻¹ᵍ
|
||||||
|
... ≃g HH theory n (pType.mk A b) : by exact Hsusp theory n (pType.mk A b)
|
||||||
|
|
||||||
|
end
|
||||||
|
|
||||||
end homology
|
end homology
|
||||||
|
|
Loading…
Reference in a new issue