redefine homology to use smash with prespectra
This commit is contained in:
parent
e90c657dcb
commit
61e3a9ce0e
5 changed files with 41 additions and 16 deletions
|
@ -6,7 +6,7 @@ namespace group
|
||||||
|
|
||||||
section
|
section
|
||||||
|
|
||||||
parameters (A : ℕ → AbGroup) (f : Πi , A i → A (i + 1))
|
parameters (A : ℕ → AbGroup) (f : Πi , A i →g A (i + 1))
|
||||||
variables {A' : AbGroup}
|
variables {A' : AbGroup}
|
||||||
|
|
||||||
definition seq_colim_carrier : AbGroup := dirsum A
|
definition seq_colim_carrier : AbGroup := dirsum A
|
||||||
|
@ -72,8 +72,21 @@ namespace group
|
||||||
|
|
||||||
definition seq_colim_functor [constructor] {A A' : ℕ → AbGroup}
|
definition seq_colim_functor [constructor] {A A' : ℕ → AbGroup}
|
||||||
{f : Πi , A i →g A (i + 1)} {f' : Πi , A' i →g A' (i + 1)}
|
{f : Πi , A i →g A (i + 1)} {f' : Πi , A' i →g A' (i + 1)}
|
||||||
(h : Πi, A i →g A' i) : seq_colim A f →g seq_colim A' f' :=
|
(h : Πi, A i →g A' i) (p : Πi, hsquare (f i) (f' i) (h i) (h (i+1))) :
|
||||||
sorry --_ ∘g _
|
seq_colim A f →g seq_colim A' f' :=
|
||||||
|
seq_colim_elim (λi, seq_colim_incl i ∘g h i)
|
||||||
|
begin
|
||||||
|
intro i a,
|
||||||
|
refine !homomorphism_comp_compute ⬝ _ ⬝ !homomorphism_comp_compute⁻¹,
|
||||||
|
refine _ ⬝ ap (seq_colim_incl (succ i)) (p i a)⁻¹,
|
||||||
|
apply seq_colim_glue
|
||||||
|
end
|
||||||
|
|
||||||
|
-- definition seq_colim_functor_compose [constructor] {A A' A'' : ℕ → AbGroup}
|
||||||
|
-- {f : Πi , A i →g A (i + 1)} {f' : Πi , A' i →g A' (i + 1)} {f'' : Πi , A'' i →g A'' (i + 1)}
|
||||||
|
-- (h : Πi, A i →g A' i) (p : Πi (a : A i), h (i+1) (f i a) = f' i (h i a))
|
||||||
|
-- (h : Πi, A i →g A' i) (p : Πi (a : A i), h (i+1) (f i a) = f' i (h i a)) :
|
||||||
|
-- seq_colim A f →g seq_colim A' f' :=
|
||||||
|
-- sorry
|
||||||
|
|
||||||
end group
|
end group
|
||||||
|
|
|
@ -377,6 +377,12 @@ namespace seq_colim
|
||||||
exact !pcompose_pid
|
exact !pcompose_pid
|
||||||
end
|
end
|
||||||
|
|
||||||
|
definition seq_colim_equiv_zigzag (g : Π⦃n⦄, A n → A' n) (h : Π⦃n⦄, A' n → A (succ n))
|
||||||
|
(p : Π⦃n⦄ (a : A n), h (g a) = f a) (q : Π⦃n⦄ (a : A' n), g (h a) = f' a) :
|
||||||
|
seq_colim f ≃ seq_colim f' :=
|
||||||
|
sorry
|
||||||
|
|
||||||
|
|
||||||
definition is_equiv_seq_colim_rec (P : seq_colim f → Type) :
|
definition is_equiv_seq_colim_rec (P : seq_colim f → Type) :
|
||||||
is_equiv (seq_colim_rec_unc :
|
is_equiv (seq_colim_rec_unc :
|
||||||
(Σ(Pincl : Π ⦃n : ℕ⦄ (a : A n), P (ι f a)),
|
(Σ(Pincl : Π ⦃n : ℕ⦄ (a : A n), P (ι f a)),
|
||||||
|
|
|
@ -112,8 +112,8 @@ notation `pH_` n `[`:0 binders `, ` r:(scoped E, parametrized_homology E n) `]`:
|
||||||
definition unpointed_homology (X : Type) (E : spectrum) (n : ℤ) : AbGroup :=
|
definition unpointed_homology (X : Type) (E : spectrum) (n : ℤ) : AbGroup :=
|
||||||
H_ n[X₊, E]
|
H_ n[X₊, E]
|
||||||
|
|
||||||
definition homology_functor [constructor] {X Y : Type*} {E F : spectrum} (f : X →* Y) (g : E →ₛ F) (n : ℤ)
|
definition homology_functor [constructor] {X Y : Type*} {E F : prespectrum} (f : X →* Y)
|
||||||
: homology X E n →g homology Y F n :=
|
(g : E →ₛ F) (n : ℤ) : homology X E n →g homology Y F n :=
|
||||||
pshomotopy_group_fun n (smash_prespectrum_fun f g)
|
pshomotopy_group_fun n (smash_prespectrum_fun f g)
|
||||||
|
|
||||||
definition homology_theory_spectrum.{u} [constructor] (E : spectrum.{u}) : homology_theory.{u} :=
|
definition homology_theory_spectrum.{u} [constructor] (E : spectrum.{u}) : homology_theory.{u} :=
|
||||||
|
|
|
@ -664,7 +664,7 @@ namespace smash
|
||||||
(!smash_functor_phomotopy_refl ◾** idp ⬝ !refl_trans) ⬝pv**
|
(!smash_functor_phomotopy_refl ◾** idp ⬝ !refl_trans) ⬝pv**
|
||||||
smash_functor_pconst_pcompose (pid A) (pid A) g
|
smash_functor_pconst_pcompose (pid A) (pid A) g
|
||||||
|
|
||||||
/- these lemmas are use to show that smash_functor_right is natural in all arguments -/
|
/- Using these lemmas we show that smash_functor_right is natural in all arguments -/
|
||||||
definition smash_functor_right_natural_right (f : C →* C') :
|
definition smash_functor_right_natural_right (f : C →* C') :
|
||||||
psquare (smash_functor_right A B C) (smash_functor_right A B C')
|
psquare (smash_functor_right A B C) (smash_functor_right A B C')
|
||||||
(ppcompose_left f) (ppcompose_left (pid A ∧→ f)) :=
|
(ppcompose_left f) (ppcompose_left (pid A ∧→ f)) :=
|
||||||
|
@ -926,8 +926,8 @@ namespace smash
|
||||||
refine _ ⬝hp (!ap_con ⬝ !ap_compose'⁻¹ ◾ !elim_gluer)⁻¹, exact hrfl },
|
refine _ ⬝hp (!ap_con ⬝ !ap_compose'⁻¹ ◾ !elim_gluer)⁻¹, exact hrfl },
|
||||||
end
|
end
|
||||||
|
|
||||||
definition smash_flip_smash_functor (f : A →* C) (g : B →* D) : psquare
|
definition smash_flip_smash_functor (f : A →* C) (g : B →* D) :
|
||||||
(smash_flip A B) (smash_flip C D) (f ∧→ g) (g ∧→ f) :=
|
psquare (smash_flip A B) (smash_flip C D) (f ∧→ g) (g ∧→ f) :=
|
||||||
begin
|
begin
|
||||||
apply phomotopy.mk (smash_flip_smash_functor' f g), refine !idp_con ⬝ _ ⬝ !idp_con⁻¹,
|
apply phomotopy.mk (smash_flip_smash_functor' f g), refine !idp_con ⬝ _ ⬝ !idp_con⁻¹,
|
||||||
refine !ap_ap011 ⬝ _, apply ap011_flip,
|
refine !ap_ap011 ⬝ _, apply ap011_flip,
|
||||||
|
|
|
@ -98,7 +98,7 @@ namespace spectrum
|
||||||
| succ_str.of_nat zero := z
|
| succ_str.of_nat zero := z
|
||||||
| succ_str.of_nat (succ k) := S (succ_str.of_nat k)
|
| succ_str.of_nat (succ k) := S (succ_str.of_nat k)
|
||||||
|
|
||||||
definition psp_of_gen_indexed [constructor] {N : succ_str} (z : N) (E : gen_prespectrum N) : gen_prespectrum +ℤ :=
|
definition psp_of_gen_indexed [constructor] {N : succ_str} (z : N) (E : gen_prespectrum N) : prespectrum :=
|
||||||
psp_of_nat_indexed (gen_prespectrum.mk (λn, E (succ_str.of_nat z n)) (λn, gen_prespectrum.glue E (succ_str.of_nat z n)))
|
psp_of_nat_indexed (gen_prespectrum.mk (λn, E (succ_str.of_nat z n)) (λn, gen_prespectrum.glue E (succ_str.of_nat z n)))
|
||||||
|
|
||||||
definition is_spectrum_of_gen_indexed [instance] {N : succ_str} (z : N) (E : gen_prespectrum N) [H : is_spectrum E]
|
definition is_spectrum_of_gen_indexed [instance] {N : succ_str} (z : N) (E : gen_prespectrum N) [H : is_spectrum E]
|
||||||
|
@ -257,20 +257,26 @@ namespace spectrum
|
||||||
|
|
||||||
/- homotopy group of a prespectrum -/
|
/- homotopy group of a prespectrum -/
|
||||||
|
|
||||||
definition pshomotopy_group (n : ℤ) (E : prespectrum) : AbGroup :=
|
definition pshomotopy_group_hom (n : ℤ) (E : prespectrum) (k : ℕ)
|
||||||
group.seq_colim (λ(k : ℕ), πag[k+2] (E (-n - 2 + k)))
|
: πag[k + 2] (E (-n - 2 + k)) →g πag[k + 3] (E (-n - 2 + (k + 1))) :=
|
||||||
begin
|
begin
|
||||||
intro k,
|
refine _ ∘g π→g[k+2] (glue E _),
|
||||||
refine _ ∘ π→g[k+2] (glue E _),
|
refine (ghomotopy_group_succ_in _ (k+1))⁻¹ᵍ ∘g _,
|
||||||
refine (homotopy_group_succ_in _ (k+2))⁻¹ᵉ* ∘ _,
|
refine homotopy_group_isomorphism_of_pequiv (k+1)
|
||||||
refine homotopy_group_pequiv (k+2) (loop_pequiv_loop (pequiv_of_eq (ap E !add.assoc)))
|
(loop_pequiv_loop (pequiv_of_eq (ap E !add.assoc)))
|
||||||
end
|
end
|
||||||
|
|
||||||
|
definition pshomotopy_group (n : ℤ) (E : prespectrum) : AbGroup :=
|
||||||
|
group.seq_colim (λ(k : ℕ), πag[k+2] (E (-n - 2 + k))) (pshomotopy_group_hom n E)
|
||||||
|
|
||||||
notation `πₚₛ[`:95 n:0 `]`:0 := pshomotopy_group n
|
notation `πₚₛ[`:95 n:0 `]`:0 := pshomotopy_group n
|
||||||
|
|
||||||
definition pshomotopy_group_fun (n : ℤ) {E F : prespectrum} (f : E →ₛ F) :
|
definition pshomotopy_group_fun (n : ℤ) {E F : prespectrum} (f : E →ₛ F) :
|
||||||
πₚₛ[n] E →g πₚₛ[n] F :=
|
πₚₛ[n] E →g πₚₛ[n] F :=
|
||||||
sorry --group.seq_colim_functor _ _
|
group.seq_colim_functor (λk, π→g[k+2] (f (-n - 2 +[ℤ] k)))
|
||||||
|
begin
|
||||||
|
exact sorry
|
||||||
|
end
|
||||||
|
|
||||||
notation `πₚₛ→[`:95 n:0 `]`:0 := pshomotopy_group_fun n
|
notation `πₚₛ→[`:95 n:0 `]`:0 := pshomotopy_group_fun n
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue