working on the join theorem
This commit is contained in:
parent
9ca4a3fbb1
commit
652ca1da84
1 changed files with 83 additions and 0 deletions
83
homotopy/join_theorem.hlean
Normal file
83
homotopy/join_theorem.hlean
Normal file
|
@ -0,0 +1,83 @@
|
|||
/-- Authors: Clive, Egbert --/
|
||||
|
||||
import homotopy.connectedness homotopy.join
|
||||
|
||||
open eq sigma pi function join homotopy is_trunc equiv is_equiv
|
||||
|
||||
namespace retraction
|
||||
variables {A B C : Type} (r2 : B → C) (r1 : A → B)
|
||||
|
||||
|
||||
definition is_retraction_compose
|
||||
[Hr2 : is_retraction r2] [Hr1 : is_retraction r1] :
|
||||
is_retraction (r2 ∘ r1) :=
|
||||
begin
|
||||
cases Hr2 with s2 s2_is_right_inverse,
|
||||
cases Hr1 with s1 s1_is_right_inverse,
|
||||
fapply is_retraction.mk,
|
||||
{ exact s1 ∘ s2},
|
||||
{ intro b, esimp,
|
||||
calc
|
||||
r2 (r1 (s1 (s2 (b)))) = r2 (s2 (b)) : ap r2 (s1_is_right_inverse (s2 b))
|
||||
... = b : s2_is_right_inverse b
|
||||
|
||||
}, /-- QED --/
|
||||
end
|
||||
|
||||
definition is_retraction_compose_equiv_left [Hr2 : is_equiv r2] [Hr1 : is_retraction r1] : is_retraction (r2 ∘ r1) :=
|
||||
begin
|
||||
apply is_retraction_compose,
|
||||
end
|
||||
|
||||
definition is_retraction_compose_equiv_right [Hr2 : is_retraction r2] [Hr1 : is_equiv r1] : is_retraction (r2 ∘ r1) :=
|
||||
begin
|
||||
apply is_retraction_compose,
|
||||
end
|
||||
|
||||
end retraction
|
||||
|
||||
namespace is_conn
|
||||
section
|
||||
|
||||
open retraction
|
||||
|
||||
universe variable u
|
||||
parameters (n : ℕ₋₂) {A : Type.{u}}
|
||||
parameter sec : ΠV : trunctype.{u} n,
|
||||
is_retraction (const A : V → (A → V))
|
||||
|
||||
include sec
|
||||
|
||||
protected definition intro : is_conn n A :=
|
||||
begin
|
||||
apply is_conn_of_map_to_unit,
|
||||
apply is_conn_fun.intro,
|
||||
intro P,
|
||||
refine is_retraction_compose_equiv_right (const A) (pi_unit_left P),
|
||||
end
|
||||
end
|
||||
end is_conn
|
||||
|
||||
section Join_Theorem
|
||||
|
||||
variables (X Y : Type)
|
||||
(m n : ℕ₋₂)
|
||||
[HXm : is_conn m X]
|
||||
[HYn : is_conn n Y]
|
||||
|
||||
include HXm HYn
|
||||
|
||||
theorem is_conn_join : is_conn (m +2+ n) (join X Y) :=
|
||||
begin
|
||||
apply is_conn.intro,
|
||||
intro V,
|
||||
apply is_retraction_of_is_equiv,
|
||||
apply is_equiv_of_is_contr_fun,
|
||||
intro f,
|
||||
refine is_contr_equiv_closed _,
|
||||
{exact unit},
|
||||
symmetry,
|
||||
exact sorry
|
||||
end
|
||||
|
||||
end Join_Theorem
|
Loading…
Reference in a new issue