progress on LES of spectrum maps
This commit is contained in:
parent
f826a7a711
commit
683a515178
3 changed files with 34 additions and 35 deletions
|
@ -184,7 +184,7 @@ namespace group
|
|||
is_contr (Σ(g : quotient_group N →g G'), g ∘g gq_map N = f) :=
|
||||
sorry
|
||||
|
||||
/- Binary products (direct sums) of Groups -/
|
||||
/- Binary products (direct product) of Groups -/
|
||||
definition product_one [constructor] : G × G' := (one, one)
|
||||
definition product_inv [unfold 3] : G × G' → G × G' :=
|
||||
λv, (v.1⁻¹, v.2⁻¹)
|
||||
|
|
|
@ -170,6 +170,16 @@ namespace pointed
|
|||
pequiv_of_equiv (pi_equiv_pi_right g)
|
||||
begin esimp, apply eq_of_homotopy, intros a, esimp, exact (respect_pt (g a)) end
|
||||
|
||||
definition pcast_commute [constructor] {A : Type} {B C : A → Type*} (f : Πa, B a →* C a)
|
||||
{a₁ a₂ : A} (p : a₁ = a₂) : pcast (ap C p) ∘* f a₁ ~* f a₂ ∘* pcast (ap B p) :=
|
||||
phomotopy.mk
|
||||
begin induction p, reflexivity end
|
||||
begin induction p, esimp, refine !idp_con ⬝ !idp_con ⬝ !ap_id⁻¹ end
|
||||
|
||||
definition pequiv_of_eq_commute [constructor] {A : Type} {B C : A → Type*} (f : Πa, B a →* C a)
|
||||
{a₁ a₂ : A} (p : a₁ = a₂) : pequiv_of_eq (ap C p) ∘* f a₁ ~* f a₂ ∘* pequiv_of_eq (ap B p) :=
|
||||
pcast_commute f p
|
||||
|
||||
end pointed
|
||||
open pointed
|
||||
|
||||
|
@ -401,17 +411,30 @@ namespace spectrum
|
|||
|
||||
definition π_glue (X : spectrum) (n : ℤ) : π*[2] (X (2 - succ n)) ≃* π*[3] (X (2 - n)) :=
|
||||
begin
|
||||
symmetry,
|
||||
refine pequiv_of_eq (phomotopy_group_succ_in (X (2 - n)) 2) ⬝e* _,
|
||||
assert H : 2 - n = succ (2 - succ n), exact (sub_add_cancel (2-n) 1)⁻¹ ⬝ ap succ !sub_sub,
|
||||
refine phomotopy_group_pequiv 2 (loop_pequiv_loop (pequiv_of_eq (ap X H))) ⬝e* _,
|
||||
exact phomotopy_group_pequiv 2 (equiv_glue X (2 - succ n))⁻¹ᵉ*
|
||||
refine phomotopy_group_pequiv 2 (equiv_glue X (2 - succ n)) ⬝e* _,
|
||||
assert H : succ (2 - succ n) = 2 - n, exact ap succ !sub_sub⁻¹ ⬝ sub_add_cancel (2-n) 1,
|
||||
refine pequiv_of_eq (ap (λn, π*[2] (Ω (X n))) H) ⬝e* _,
|
||||
refine (pequiv_of_eq (phomotopy_group_succ_in (X (2 - n)) 2))⁻¹ᵉ*,
|
||||
end
|
||||
|
||||
/- TODO: fill in sorry -/
|
||||
definition π_glue_square {X Y : spectrum} (f : X →ₛ Y) (n : ℤ) :
|
||||
π_glue Y n ∘* π→*[2] (f (2 - succ n)) ~* π→*[3] (f (2 - n)) ∘* π_glue X n :=
|
||||
sorry
|
||||
begin
|
||||
refine !passoc ⬝* _,
|
||||
assert H1 : phomotopy_group_pequiv 2 (equiv_glue Y (2 - succ n)) ∘* π→*[2] (f (2 - succ n))
|
||||
~* π→*[2] (Ω→ (f (succ (2 - succ n)))) ∘* phomotopy_group_pequiv 2 (equiv_glue X (2 - succ n)),
|
||||
{ refine !phomotopy_group_functor_compose⁻¹* ⬝* _,
|
||||
refine phomotopy_group_functor_phomotopy 2 !sglue_square ⬝* _,
|
||||
apply phomotopy_group_functor_compose },
|
||||
refine pwhisker_left _ H1 ⬝* _, clear H1,
|
||||
refine !passoc⁻¹* ⬝* _ ⬝* !passoc,
|
||||
apply pwhisker_right,
|
||||
rewrite [+ to_pmap_pequiv_trans],
|
||||
refine !passoc ⬝* _,
|
||||
refine pwhisker_left _ !pequiv_of_eq_commute ⬝* _,
|
||||
refine !passoc⁻¹* ⬝* _ ⬝* !passoc,
|
||||
reflexivity -- if we generalize 2 to n, this is not reflexivity anymore
|
||||
end
|
||||
|
||||
section
|
||||
open chain_complex prod fin group
|
||||
|
@ -441,8 +464,8 @@ namespace spectrum
|
|||
definition is_homomorphism_LES_of_shomotopy_groups :
|
||||
Π(v : +3ℤ), is_homomorphism (cc_to_fn LES_of_shomotopy_groups v)
|
||||
| (n, fin.mk 0 H) := proof homomorphism.struct (πₛ→[n] f) qed
|
||||
| (n, fin.mk 1 H) := proof homomorphism.struct (πₛ→[n] (spoint f)) qed
|
||||
| (n, fin.mk 2 H) := proof is_homomorphism_compose sorry sorry qed
|
||||
| (n, fin.mk 1 H) := proof homomorphism.struct (πₛ→[n] (spoint f)) qed
|
||||
| (n, fin.mk 2 H) := begin exact sorry end
|
||||
| (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
|
||||
|
||||
-- In the comments below is a start on an explicit description of the LES for spectra
|
||||
|
|
|
@ -63,31 +63,7 @@ begin
|
|||
{ exact dif_pos p}
|
||||
end
|
||||
|
||||
-- definition splice_type {N M : succ_str} (G : N → chain_complex M) (k : ℕ) (m : M)
|
||||
-- (x : stratified N k) : Set* :=
|
||||
-- G x.1 (iterate S (val x.2) m)
|
||||
|
||||
-- -- definition splice_map {N M : succ_str} (G : N → chain_complex M) (k : ℕ) (m : M)
|
||||
-- -- (x : stratified N k) : Set* :=
|
||||
-- -- G x.1 (iterate S (val x.2) m)
|
||||
|
||||
-- definition splice (N M : succ_str) (G : N → chain_complex M) (k : ℕ) (m : M)
|
||||
-- (e0 : Πn, G n m ≃* G (S n) (S (iterate S k m))) :
|
||||
-- chain_complex (stratified N k) :=
|
||||
-- chain_complex.mk (splice_type G k m)
|
||||
-- begin
|
||||
-- intro x, cases x with n l, cases l with l H,
|
||||
-- refine if K : l = k then _ else _,
|
||||
-- { intro p, induction p, exact sorry},
|
||||
-- { exact sorry}
|
||||
-- -- cases l with l,
|
||||
-- -- { },
|
||||
-- -- { }
|
||||
-- end
|
||||
-- begin
|
||||
-- exact sorry
|
||||
-- end
|
||||
|
||||
--move
|
||||
definition succ_str.add [reducible] {N : succ_str} (n : N) (k : ℕ) : N :=
|
||||
iterate S k n
|
||||
|
||||
|
|
Loading…
Reference in a new issue