From 6889eba5ea60526766cb7a29bb76e5143139b880 Mon Sep 17 00:00:00 2001 From: Steve Awodey Date: Thu, 21 Jan 2016 14:33:54 -0500 Subject: [PATCH] added homotopy subdirectory and sample file to formalize Chapter 8 of the book --- homotopy/sample.hlean | 194 ++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 194 insertions(+) create mode 100644 homotopy/sample.hlean diff --git a/homotopy/sample.hlean b/homotopy/sample.hlean new file mode 100644 index 0000000..f4949ae --- /dev/null +++ b/homotopy/sample.hlean @@ -0,0 +1,194 @@ +/- +Copyright (c) 2015 Ulrik Buchholtz. All rights reserved. +Released under Apache 2.0 license as described in the file LICENSE. +Authors: Ulrik Buchholtz +-/ +import types.trunc types.arrow_2 types.fiber .susp + +open eq is_trunc is_equiv nat equiv trunc function fiber + +namespace homotopy + + definition is_conn [reducible] (n : trunc_index) (A : Type) : Type := + is_contr (trunc n A) + + definition is_conn_equiv_closed (n : trunc_index) {A B : Type} + : A ≃ B → is_conn n A → is_conn n B := + begin + intros H C, + fapply @is_contr_equiv_closed (trunc n A) _, + apply trunc_equiv_trunc, + assumption + end + + definition is_conn_map (n : trunc_index) {A B : Type} (f : A → B) : Type := + Πb : B, is_conn n (fiber f b) + + namespace is_conn_map + section + parameters {n : trunc_index} {A B : Type} {h : A → B} + (H : is_conn_map n h) (P : B → n -Type) + + private definition helper : (Πa : A, P (h a)) → Πb : B, trunc n (fiber h b) → P b := + λt b, trunc.rec (λx, point_eq x ▸ t (point x)) + + private definition g : (Πa : A, P (h a)) → (Πb : B, P b) := + λt b, helper t b (@center (trunc n (fiber h b)) (H b)) + + -- induction principle for n-connected maps (Lemma 7.5.7) + definition rec : is_equiv (λs : Πb : B, P b, λa : A, s (h a)) := + adjointify (λs a, s (h a)) g + begin + intro t, apply eq_of_homotopy, intro a, unfold g, unfold helper, + rewrite [@center_eq _ (H (h a)) (tr (fiber.mk a idp))], + end + begin + intro k, apply eq_of_homotopy, intro b, unfold g, + generalize (@center _ (H b)), apply trunc.rec, apply fiber.rec, + intros a p, induction p, reflexivity + end + + definition elim : (Πa : A, P (h a)) → (Πb : B, P b) := + @is_equiv.inv _ _ (λs a, s (h a)) rec + + definition elim_β : Πf : (Πa : A, P (h a)), Πa : A, elim f (h a) = f a := + λf, apd10 (@is_equiv.right_inv _ _ (λs a, s (h a)) rec f) + + end + + section + universe variables u v + parameters {n : trunc_index} {A : Type.{u}} {B : Type.{v}} {h : A → B} + parameter sec : ΠP : B → trunctype.{max u v} n, + is_retraction (λs : (Πb : B, P b), λ a, s (h a)) + + private definition s := sec (λb, trunctype.mk' n (trunc n (fiber h b))) + + include sec + + -- the other half of Lemma 7.5.7 + definition intro : is_conn_map n h := + begin + intro b, + apply is_contr.mk (@is_retraction.sect _ _ _ s (λa, tr (fiber.mk a idp)) b), + apply trunc.rec, apply fiber.rec, intros a p, + apply transport + (λz : (Σy, h a = y), @sect _ _ _ s (λa, tr (mk a idp)) (sigma.pr1 z) = + tr (fiber.mk a (sigma.pr2 z))) + (@center_eq _ (is_contr_sigma_eq (h a)) (sigma.mk b p)), + exact apd10 (@right_inverse _ _ _ s (λa, tr (fiber.mk a idp))) a + end + end + end is_conn_map + + -- Connectedness is related to maps to and from the unit type, first to + section + parameters (n : trunc_index) (A : Type) + + definition is_conn_of_map_to_unit + : is_conn_map n (λx : A, unit.star) → is_conn n A := + begin + intro H, unfold is_conn_map at H, + rewrite [-(ua (fiber.fiber_star_equiv A))], + exact (H unit.star) + end + + -- now maps from unit + definition is_conn_of_map_from_unit (a₀ : A) (H : is_conn_map n (const unit a₀)) + : is_conn n .+1 A := + is_contr.mk (tr a₀) + begin + apply trunc.rec, intro a, + exact trunc.elim (λz : fiber (const unit a₀) a, ap tr (point_eq z)) + (@center _ (H a)) + end + + definition is_conn_map_from_unit (a₀ : A) [H : is_conn n .+1 A] + : is_conn_map n (const unit a₀) := + begin + intro a, + apply is_conn_equiv_closed n (equiv.symm (fiber_const_equiv A a₀ a)), + apply @is_contr_equiv_closed _ _ (tr_eq_tr_equiv n a₀ a), + end + + end + + -- Lemma 7.5.2 + definition minus_one_conn_of_surjective {A B : Type} (f : A → B) + : is_surjective f → is_conn_map -1 f := + begin + intro H, intro b, + exact @is_contr_of_inhabited_hprop (∥fiber f b∥) (is_trunc_trunc -1 (fiber f b)) (H b), + end + + definition is_surjection_of_minus_one_conn {A B : Type} (f : A → B) + : is_conn_map -1 f → is_surjective f := + begin + intro H, intro b, + exact @center (∥fiber f b∥) (H b), + end + + definition merely_of_minus_one_conn {A : Type} : is_conn -1 A → ∥A∥ := + λH, @center (∥A∥) H + + definition minus_one_conn_of_merely {A : Type} : ∥A∥ → is_conn -1 A := + @is_contr_of_inhabited_hprop (∥A∥) (is_trunc_trunc -1 A) + + section + open arrow + + variables {f g : arrow} + + -- Lemma 7.5.4 + definition retract_of_conn_is_conn [instance] (r : arrow_hom f g) [H : is_retraction r] + (n : trunc_index) [K : is_conn_map n f] : is_conn_map n g := + begin + intro b, unfold is_conn, + apply is_contr_retract (trunc_functor n (retraction_on_fiber r b)), + exact K (on_cod (arrow.is_retraction.sect r) b) + end + + end + + -- Corollary 7.5.5 + definition is_conn_homotopy (n : trunc_index) {A B : Type} {f g : A → B} + (p : f ~ g) (H : is_conn_map n f) : is_conn_map n g := + @retract_of_conn_is_conn _ _ (arrow.arrow_hom_of_homotopy p) (arrow.is_retraction_arrow_hom_of_homotopy p) n H + + -- all types are -2-connected + definition minus_two_conn [instance] (A : Type) : is_conn -2 A := + _ + + -- Theorem 8.2.1 + open susp + + definition is_conn_susp [instance] (n : trunc_index) (A : Type) + [H : is_conn n A] : is_conn (n .+1) (susp A) := + is_contr.mk (tr north) + begin + apply trunc.rec, + fapply susp.rec, + { reflexivity }, + { exact (trunc.rec (λa, ap tr (merid a)) (center (trunc n A))) }, + { intro a, + generalize (center (trunc n A)), + apply trunc.rec, + intro a', + apply pathover_of_tr_eq, + rewrite [transport_eq_Fr,idp_con], + revert H, induction n with [n, IH], + { intro H, apply is_hprop.elim }, + { intros H, + change ap (@tr n .+2 (susp A)) (merid a) = ap tr (merid a'), + generalize a', + apply is_conn_map.elim + (is_conn_map_from_unit n A a) + (λx : A, trunctype.mk' n (ap (@tr n .+2 (susp A)) (merid a) = ap tr (merid x))), + intros, + change ap (@tr n .+2 (susp A)) (merid a) = ap tr (merid a), + reflexivity + } + } + end + +end homotopy