From 627b2acfe31794907f7560c3ea172505bf0bab67 Mon Sep 17 00:00:00 2001 From: Steve Awodey Date: Thu, 3 Nov 2016 15:12:46 -0400 Subject: [PATCH 1/2] finished UMP of the quotient --- TAGS | 692 +++++++++++++++++++++++++++++++++++ algebra/quotient_group.hlean | 15 +- 2 files changed, 705 insertions(+), 2 deletions(-) create mode 100644 TAGS diff --git a/TAGS b/TAGS new file mode 100644 index 0000000..f016d47 --- /dev/null +++ b/TAGS @@ -0,0 +1,692 @@ + +homotopy/spherical_fibrations.hlean,1152 + definition pointed_BFspherical_fibrations.pointed_BF50,1310 + definition pBGspherical_fibrations.pBG15,414 + definition BF_of_BG_mulspherical_fibrations.BF_of_BG_mul95,2692 + definition BFspherical_fibrations.BF47,1244 + definition thom_spacespherical_fibrations.thom.thom_space109,3059 + definition mirrorspherical_fibrations.mirror23,605 + definition Gspherical_fibrations.G17,484 + definition G_charspherical_fibrations.G_char20,537 + definition BG_mulspherical_fibrations.BG_mul78,2096 + definition BF_succspherical_fibrations.BF_succ55,1496 + definition BG_of_BFspherical_fibrations.BG_of_BF71,1919 + definition BF_of_BGspherical_fibrations.BF_of_BG62,1681 + protected definition secspherical_fibrations.thom.sec104,2964 + definition tauspherical_fibrations.two_sphere.tau144,4263 + definition BG_succspherical_fibrations.BG_succ39,1009 + definition pBFspherical_fibrations.pBF53,1426 + definition pointed_BGspherical_fibrations.pointed_BG12,301 + definition BF_mulspherical_fibrations.BF_mul87,2401 + definition BGspherical_fibrations.BG9,233 + definition S_of_BGspherical_fibrations.S_of_BG36,936 + +homotopy/homotopy_groups.hlean,743 + definition group_equiv_onemy.group_equiv_one44,1189 + theorem group_equiv_mul_assocmy.group_equiv_mul_assoc52,1423 + theorem group_equiv_mul_onemy.group_equiv_mul_one58,1710 + definition group_equiv_invmy.group_equiv_inv46,1234 + theorem ap1_conmy.ap1_con25,626 + theorem group_equiv_mul_left_invmy.group_equiv_mul_left_inv61,1852 + definition group_equiv_closedmy.group_equiv_closed65,2030 + theorem group_equiv_one_mulmy.group_equiv_one_mul55,1568 + definition group_equiv_mulmy.group_equiv_mul42,1118 + definition apn_composemy.apn_compose18,411 + definition apn_conmy.apn_con30,784 + definition homotopy_group_homomorphismeq.homotopy_group_homomorphism83,2503 + definition tr_mulmy.tr_mul34,931 + +homotopy/sample.hlean,1236 + definition is_conn_of_map_from_unithomotopy.is_conn_of_map_from_unit97,3227 + definition is_connhomotopy.is_conn12,308 + definition elimhomotopy.is_conn_fun.elim51,1665 + definition is_conn_homotopyhomotopy.is_conn_homotopy154,4935 + definition introhomotopy.is_conn_fun.intro70,2280 + definition is_conn_funhomotopy.is_conn_fun24,636 + definition rechomotopy.is_conn_fun.rec39,1224 + definition is_conn_of_map_to_unithomotopy.is_conn_of_map_to_unit88,2969 + definition merely_of_minus_one_connhomotopy.merely_of_minus_one_conn131,4268 + definition minus_one_conn_of_merelyhomotopy.minus_one_conn_of_merely134,4364 + definition is_conn_susphomotopy.is_conn_susp165,5320 + definition minus_one_conn_of_surjectivehomotopy.minus_one_conn_of_surjective117,3839 + definition is_conn_fun_from_unithomotopy.is_conn_fun_from_unit106,3534 + definition is_surjection_of_minus_one_connhomotopy.is_surjection_of_minus_one_conn124,4078 + definition is_conn_equiv_closedhomotopy.is_conn_equiv_closed15,404 + definition minus_two_connhomotopy.minus_two_conn159,5215 + definition elim_βhomotopy.is_conn_fun.elim_β54,1767 + definition retract_of_conn_is_connhomotopy.retract_of_conn_is_conn143,4572 + +homotopy/LES_applications.hlean,701 + definition add_plus_one_minus_oneis_conn.add_plus_one_minus_one110,4328 + definition add_plus_one_succis_conn.add_plus_one_succ111,4398 + definition eq_even_or_eq_oddnat.eq_even_or_eq_odd7,278 + definition join_empty_rightis_conn.join_empty_right87,3633 + definition succ_add_plus_oneis_conn.succ_add_plus_one114,4613 + definition rec_on_even_oddnat.rec_on_even_odd16,554 + theorem is_surjective_π_of_is_connectedis_conn.is_surjective_π_of_is_connected69,2838 + definition minus_one_add_plus_oneis_conn.minus_one_add_plus_one112,4480 + definition natural_square2is_conn.natural_square2102,4049 + theorem is_equiv_π_of_is_connectedis_conn.is_equiv_π_of_is_connected32,921 + +homotopy/LES_of_homotopy_groups.hlean,8241 + definition LES_of_homotopy_groups3_1chain_complex.LES_of_homotopy_groups3_1882,34115 + definition is_exact_LES_of_homotopy_groups3chain_complex.is_exact_LES_of_homotopy_groups3857,32991 + definition LES_of_homotopy_groups3_4chain_complex.LES_of_homotopy_groups3_4888,34446 + definition homotopy_groups_fun2chain_complex.homotopy_groups_fun2544,20051 + definition LES_of_homotopy_groups_mul3add2'chain_complex.LES_of_homotopy_groups_mul3add2'477,17839 + definition LES_of_homotopy_groups3_3chain_complex.LES_of_homotopy_groups3_3886,34336 + definition tr_mul_trchain_complex.tr_mul_tr500,18472 + definition is_exact_fiber_sequencechain_complex.is_exact_fiber_sequence80,2506 + definition boundary_mapchain_complex.boundary_map225,8385 + theorem fiber_sequence_fun_phomotopychain_complex.fiber_sequence_fun_phomotopy216,8057 + definition is_exact_LES_of_homotopy_groupschain_complex.is_exact_LES_of_homotopy_groups410,15146 + definition LES_of_homotopy_groups3_2chain_complex.LES_of_homotopy_groups3_2884,34221 + definition homotopy_groups_mul3add2chain_complex.homotopy_groups_mul3add2254,9279 + definition type_LES_of_homotopy_groupschain_complex.type_LES_of_homotopy_groups386,14323 + definition homotopy_groups_fun2_add1_5chain_complex.homotopy_groups_fun2_add1_5592,22238 + definition homotopy_groups_fun'chain_complex.homotopy_groups_fun'276,10198 + definition fin_prod_nat_equiv_natchain_complex.fin_prod_nat_equiv_nat620,23461 + definition fiber_sequence_helpernchain_complex.fiber_sequence_helpern54,1759 + theorem fiber_sequence_carrier_pequiv_eq_point_eq_idpchain_complex.fiber_sequence_carrier_pequiv_eq_point_eq_idp177,6559 + definition homotopy_groups_funchain_complex.homotopy_groups_fun260,9523 + definition fiber_sequence_carrierchain_complex.fiber_sequence_carrier62,1987 + definition homotopy_groups_fun_add3chain_complex.homotopy_groups_fun_add3312,11532 + definition comm_group_LES_of_homotopy_groupschain_complex.comm_group_LES_of_homotopy_groups486,18179 + definition LES_of_homotopy_groups2chain_complex.LES_of_homotopy_groups2779,30007 + definition LES_of_homotopy_groups_mul3add1chain_complex.LES_of_homotopy_groups_mul3add1451,17024 + definition homotopy_groups_add3chain_complex.homotopy_groups_add3240,8787 + definition LES_of_homotopy_groups3_0chain_complex.LES_of_homotopy_groups3_0880,34009 + definition homotopy_groups3eq2chain_complex.homotopy_groups3eq2794,30462 + definition fiber_sequence_helperchain_complex.fiber_sequence_helper50,1612 + definition homotopy_groups2_pequiv'chain_complex.homotopy_groups2_pequiv'641,24217 + definition fiber_sequence_carrier_equiv_inv_eqchain_complex.fiber_sequence_carrier_equiv_inv_eq125,4437 + definition homotopy_groups2chain_complex.homotopy_groups2526,19349 + definition fiber_sequence_pequiv_homotopy_groupschain_complex.fiber_sequence_pequiv_homotopy_groups319,11794 + definition is_homomorphism_cast_loop_space_succ_eq_inchain_complex.is_homomorphism_cast_loop_space_succ_eq_in504,18597 + definition fiber_sequence_funchain_complex.fiber_sequence_fun65,2078 + definition LES_of_homotopy_groups_mul3add1'chain_complex.LES_of_homotopy_groups_mul3add1'471,17652 + definition nat_of_str_6Schain_complex.nat_of_str_6S610,23009 + definition homotopy_groups_mul3chain_complex.homotopy_groups_mul3244,8912 + definition LES_of_homotopy_groupschain_complex.LES_of_homotopy_groups401,14827 + definition homotopy_groups_fun2_add1_4chain_complex.homotopy_groups_fun2_add1_4583,21862 + definition homotopy_groups3chain_complex.homotopy_groups3786,30178 + definition fiber_sequence_pequiv_homotopy_groups_3_phomotopychain_complex.fiber_sequence_pequiv_homotopy_groups_3_phomotopy336,12382 + definition homotopy_groupschain_complex.homotopy_groups234,8658 + definition homotopy_groups_fun2_add1_2chain_complex.homotopy_groups_fun2_add1_2565,21099 + definition homotopy_groups_fun2_phomotopychain_complex.homotopy_groups_fun2_phomotopy689,26060 + definition LES_of_homotopy_groups3_5chain_complex.LES_of_homotopy_groups3_5890,34556 + definition LES_of_homotopy_groups_fun3_1chain_complex.LES_of_homotopy_groups_fun3_1899,34906 + definition group_LES_of_homotopy_groups3_0chain_complex.group_LES_of_homotopy_groups3_0916,35755 + definition CommGroup_LES_of_homotopy_groups3chain_complex.CommGroup_LES_of_homotopy_groups3933,36775 + definition is_exact_type_LES_of_homotopy_groups2chain_complex.is_exact_type_LES_of_homotopy_groups2772,29801 + theorem homotopy_groups_fun_eqchain_complex.homotopy_groups_fun_eq287,10605 + definition LES_of_homotopy_groups_mul3'chain_complex.LES_of_homotopy_groups_mul3'465,17477 + definition LES_of_homotopy_groups_fun3_0chain_complex.LES_of_homotopy_groups_fun3_0896,34780 + definition comm_group_LES_of_homotopy_groups3chain_complex.comm_group_LES_of_homotopy_groups3923,36148 + definition homotopy_groups_fun2_add1_1chain_complex.homotopy_groups_fun2_add1_1560,20890 + definition fiber_sequence_pequiv_homotopy_groups_add3chain_complex.fiber_sequence_pequiv_homotopy_groups_add3331,12158 + definition homotopy_groups_fun'_add3chain_complex.homotopy_groups_fun'_add3283,10455 + definition is_homomorphism_inversechain_complex.is_homomorphism_inverse514,19037 + theorem fiber_sequence_fun_phomotopy_helperchain_complex.fiber_sequence_fun_phomotopy_helper194,7170 + definition homotopy_groups_fun_add6chain_complex.homotopy_groups_fun_add6270,9919 + definition LES_of_homotopy_groups_fun3_5chain_complex.LES_of_homotopy_groups_fun3_5911,35532 + theorem fiber_sequence_phomotopy_homotopy_groups'chain_complex.fiber_sequence_phomotopy_homotopy_groups'344,12670 + definition LES_of_homotopy_groups_fun3_4chain_complex.LES_of_homotopy_groups_fun3_4908,35381 + definition is_exact_type_LES_of_homotopy_groupschain_complex.is_exact_type_LES_of_homotopy_groups393,14582 + definition fiber_sequence_carrier_equiv_eqchain_complex.fiber_sequence_carrier_equiv_eq110,3830 + definition LES_of_homotopy_groups_mul3chain_complex.LES_of_homotopy_groups_mul3444,16814 + definition LES_of_homotopy_groups3chain_complex.LES_of_homotopy_groups3850,32786 + theorem fiber_sequence_phomotopy_homotopy_groupschain_complex.fiber_sequence_phomotopy_homotopy_groups377,13934 + definition LES_of_homotopy_groups_mul3add2chain_complex.LES_of_homotopy_groups_mul3add2458,17246 + definition homotopy_groups_fun3chain_complex.homotopy_groups_fun3804,30894 + definition homotopy_groups_mul3add1chain_complex.homotopy_groups_mul3add1249,9089 + definition fiber_sequence_carrier_pequiv_inv_eqchain_complex.fiber_sequence_carrier_pequiv_inv_eq149,5360 + definition fiber_sequence_carrier_pequivchain_complex.fiber_sequence_carrier_pequiv134,4778 + theorem fiber_sequence_fun_eqchain_complex.fiber_sequence_fun_eq208,7685 + definition fiber_sequence_carrier_equivchain_complex.fiber_sequence_carrier_equiv84,2664 + definition nat_of_strchain_complex.nat_of_str604,22800 + definition fiber_sequencechain_complex.fiber_sequence70,2251 + definition str_of_natchain_complex.str_of_nat607,22917 + definition homomorphism_LES_of_homotopy_groups_fun3chain_complex.homomorphism_LES_of_homotopy_groups_fun3937,36984 + definition homotopy_groups_fun3eq2chain_complex.homotopy_groups_fun3eq2816,31572 + definition homotopy_groups_fun2_add1_0chain_complex.homotopy_groups_fun2_add1_0555,20681 + definition fiber_sequence_fun_eq_helperchain_complex.fiber_sequence_fun_eq_helper157,5693 + definition homotopy_groups2_add1chain_complex.homotopy_groups2_add1534,19628 + definition homotopy_groups_fun2_add1_3chain_complex.homotopy_groups_fun2_add1_3574,21486 + definition LES_of_homotopy_groups_fun3_3chain_complex.LES_of_homotopy_groups_fun3_3905,35239 + definition LES_of_homotopy_groups_fun3_2chain_complex.LES_of_homotopy_groups_fun3_2902,35041 + definition type_LES_of_homotopy_groups2chain_complex.type_LES_of_homotopy_groups2758,29331 + definition homotopy_groups2_pequivchain_complex.homotopy_groups2_pequiv684,25855 + definition group_LES_of_homotopy_groupschain_complex.group_LES_of_homotopy_groups483,18035 + definition fiber_sequence_carrier_pequiv_eqchain_complex.fiber_sequence_carrier_pequiv_eq142,5004 + +group_theory/constructions.hlean,10223 + definition normal_subgroup_kernelgroup.normal_subgroup_kernel721,26462 + structure Rinvgroup.normal_subgroup_rel.Rinv23,565 + | rinvgroup.generating_relation'.rinv614,22880 + | rreflgroup.free_comm_group.fcg_rel.rrefl435,16260 + definition fcg_mulgroup.free_comm_group.fcg_mul492,18417 + theorem subgroup_one_mulgroup.subgroup_one_mul82,3290 + structure rec_ongroup.normal_subgroup_rel.rec_on23,565 + definition quotient_comm_group_gengroup.quotient_comm_group_gen633,23558 + structure Rgroup.subgroup_rel.R17,410 + theorem kernel_mulgroup.kernel_mul680,25173 + definition sggroup.sg65,2698 + theorem subgroup_mul_assocgroup.subgroup_mul_assoc79,3183 + | rmulgroup.generating_relation'.rmul613,22779 + definition subgroup_onegroup.subgroup_one68,2786 + definition is_reflexive_Rgroup.free_group.is_reflexive_R290,10899 + inductive cases_ongroup.free_group.free_group_rel.cases_on274,10175 + abbreviation subgroup_has_onegroup.subgroup_has_one28,791 + definition free_group_onegroup.free_group.free_group_one315,11815 + theorem quotient_rel_symmgroup.quotient_rel_symm120,4459 + | resp_appendgroup.free_group.free_group_rel.resp_append278,10373 + definition fcg_carriergroup.free_comm_group.fcg_carrier449,16786 + definition group_qggroup.group_qg210,7984 + theorem product_one_mulgroup.product_one_mul240,9105 + definition free_group_inclusiongroup.free_group_inclusion376,13925 + structure destructgroup.subgroup_rel.destruct17,410 + definition free_comm_group_inclusiongroup.free_comm_group_inclusion560,20652 + theorem free_group_mul_left_invgroup.free_group.free_group_mul_left_inv348,12968 + definition group_prodgroup.group_prod255,9511 + | rtransgroup.free_group.free_group_rel.rtrans280,10519 + definition free_comm_group_homgroup.free_comm_group_hom575,21250 + definition normal_generating_relationgroup.normal_generating_relation625,23357 + definition free_comm_groupgroup.free_comm_group555,20471 + structure to_subgroup_relgroup.normal_subgroup_rel.to_subgroup_rel23,565 + definition free_group_invgroup.free_group.free_group_inv316,11879 + structure Rmulgroup.normal_subgroup_rel.Rmul23,565 + theorem rel_respect_reversegroup.free_comm_group.rel_respect_reverse468,17493 + theorem free_group_mul_assocgroup.free_group.free_group_mul_assoc327,12349 + structure normal_subgroup_relgroup.normal_subgroup_rel23,565 + definition gr_mulgroup.gr_mul622,23272 + theorem product_mul_assocgroup.product_mul_assoc237,8989 + definition quotient_comm_groupgroup.quotient_comm_group221,8428 + theorem fcg_one_mulgroup.free_comm_group.fcg_one_mul509,18950 + abbreviation subgroup_respect_mulgroup.subgroup_respect_mul29,860 + definition comm_group_prodgroup.comm_group_prod262,9779 + inductive fcg_relgroup.free_comm_group.fcg_rel.rec434,16208 + definition quotient_relgroup.quotient_rel115,4268 + inductive dirsum_relgroup.dirsum_rel643,23866 + theorem quotient_mul_assocgroup.quotient_mul_assoc172,6919 + theorem product_mul_commgroup.product_mul_comm249,9371 + definition subgroupgroup.subgroup102,3873 + theorem fgh_helper_respect_comm_relgroup.fgh_helper_respect_comm_rel563,20753 + theorem quotient_rel_transgroup.quotient_rel_trans123,4623 + definition kernelgroup.kernel678,25082 + definition qggroup.qg157,6375 + definition comm_subgroupgroup.comm_subgroup109,4111 + definition direct_sumgroup.direct_sum646,23998 + structure normal_subgroup_relgroup.normal_subgroup_rel.rec23,565 + definition gr_invgroup.gr_inv620,23198 + theorem rel_cons_concatgroup.free_comm_group.rel_cons_concat479,17905 + theorem fgh_helper_mulgroup.fgh_helper_mul393,14566 + definition comm_group_sggroup.comm_group_sg105,3947 + | resp_appendgroup.free_comm_group.fcg_rel.resp_append439,16420 + definition fn_of_free_group_homgroup.fn_of_free_group_hom413,15391 + theorem fcg_mul_assocgroup.free_comm_group.fcg_mul_assoc500,18669 + theorem product_mul_left_invgroup.product_mul_left_inv246,9271 + definition comm_group_qggroup.comm_group_qg217,8257 + definition normal_subgroup_rel_commgroup.normal_subgroup_rel_comm39,1314 + | cancel1group.free_comm_group.fcg_rel.cancel1436,16290 + definition fgh_helpergroup.fgh_helper379,14019 + definition product_onegroup.product_one226,8642 + mkgroup.normal_subgroup_rel.mk24,627 + definition generating_relationgroup.generating_relation617,23026 + | cancel2group.free_group.free_group_rel.cancel2277,10322 + | rmkgroup.dirsum_rel.rmk644,23910 + structure no_confusiongroup.subgroup_rel.no_confusion17,410 + inductive rec_ongroup.free_comm_group.fcg_rel.rec_on434,16208 + theorem is_normal_subgroup_kernelgroup.is_normal_subgroup_kernel707,25917 + theorem fgh_helper_respect_relgroup.fgh_helper_respect_rel382,14131 + abbreviation is_normal_subgroupgroup.is_normal_subgroup31,998 + | rinclgroup.generating_relation'.rincl612,22730 + definition free_group_carriergroup.free_group.free_group_carrier287,10767 + theorem quotient_mul_onegroup.quotient_mul_one187,7357 + | rtransgroup.free_comm_group.fcg_rel.rtrans441,16545 + structure Rinvgroup.subgroup_rel.Rinv17,410 + definition fn_of_free_comm_group_homgroup.fn_of_free_comm_group_hom586,21759 + mkgroup.subgroup_rel.mk18,442 + definition gr_onegroup.gr_one619,23155 + theorem is_normal_subgroup_rev'group.is_normal_subgroup_rev'52,1969 + structure subgroup_relgroup.subgroup_rel.rec17,410 + structure Rgroup.normal_subgroup_rel.R23,565 + inductive fcg_relgroup.free_comm_group.fcg_rel434,16208 + definition quotient_onegroup.quotient_one161,6480 + theorem quotient_rel_reflgroup.quotient_rel_refl118,4339 + theorem product_mul_onegroup.product_mul_one243,9188 + definition free_comm_group_hom_equiv_fngroup.free_comm_group_hom_equiv_fn590,21903 + definition subgroup_kernelgroup.subgroup_kernel699,25721 + | cancel1group.free_group.free_group_rel.cancel1276,10271 + definition product_mulgroup.product_mul229,8782 + theorem quotient_rel_resp_mulgroup.quotient_rel_resp_mul140,5543 + definition free_groupgroup.free_group371,13774 + theorem is_normal_subgroup'group.is_normal_subgroup'36,1200 + definition productgroup.product259,9701 + definition free_group_homgroup.free_group_hom402,14897 + theorem normal_subgroup_insertgroup.normal_subgroup_insert55,2094 + theorem quotient_mul_left_invgroup.quotient_mul_left_inv193,7512 + structure Rmulgroup.subgroup_rel.Rmul17,410 + theorem quotient_rel_resp_invgroup.quotient_rel_resp_inv131,5061 + theorem fcg_mul_commgroup.free_comm_group.fcg_mul_comm536,19740 + definition group_free_comm_groupgroup.group_free_comm_group551,20268 + inductive cases_ongroup.dirsum_rel.cases_on643,23866 + structure Ronegroup.normal_subgroup_rel.Rone23,565 + structure is_normalgroup.normal_subgroup_rel.is_normal23,565 + abbreviation subgroup_to_relgroup.subgroup_to_rel27,725 + definition is_reflexive_Rgroup.free_comm_group.is_reflexive_R452,16904 + structure cases_ongroup.normal_subgroup_rel.cases_on23,565 + | rflipgroup.free_comm_group.fcg_rel.rflip438,16378 + definition product_invgroup.product_inv227,8704 + structure Ronegroup.subgroup_rel.Rone17,410 + | cancel2group.free_comm_group.fcg_rel.cancel2437,16334 + inductive free_group_relgroup.free_group.free_group_rel274,10175 + definition group_sggroup.group_sg98,3680 + definition subgroup_invgroup.subgroup_inv69,2861 + theorem rel_respect_reversegroup.free_group.rel_respect_reverse305,11444 + inductive dirsum_relgroup.dirsum_rel.rec643,23866 + definition quotient_groupgroup.quotient_group214,8177 + definition free_group_mulgroup.free_group.free_group_mul319,12069 + definition dirsum_carriergroup.dirsum_carrier641,23724 + inductive rec_ongroup.generating_relation'.rec_on611,22688 + structure destructgroup.normal_subgroup_rel.destruct23,565 + inductive generating_relation'group.generating_relation'611,22688 + theorem quotient_mul_commgroup.quotient_mul_comm199,7679 + theorem kernel_invgroup.kernel_inv690,25493 + inductive rec_ongroup.free_group.free_group_rel.rec_on274,10175 + theorem free_group_one_mulgroup.free_group.free_group_one_mul336,12637 + theorem rel_respect_flipgroup.free_comm_group.rel_respect_flip457,17078 + inductive free_group_relgroup.free_group.free_group_rel.rec274,10175 + inductive cases_ongroup.generating_relation'.cases_on611,22688 + definition fcg_invgroup.free_comm_group.fcg_inv489,18234 + theorem subgroup_mul_commgroup.subgroup_mul_comm91,3530 + inductive rec_ongroup.dirsum_rel.rec_on643,23866 + definition fcg_onegroup.free_comm_group.fcg_one488,18177 + structure rec_ongroup.subgroup_rel.rec_on17,410 + theorem subgroup_mul_left_invgroup.subgroup_mul_left_inv88,3442 + theorem fcg_mul_left_invgroup.free_comm_group.fcg_mul_left_inv521,19267 + theorem rel_respect_flipgroup.free_group.rel_respect_flip295,11073 + | rreflgroup.free_group.free_group_rel.rrefl275,10234 + inductive generating_relation'group.generating_relation'.rec611,22688 + theorem quotient_one_mulgroup.quotient_one_mul181,7202 + definition quotient_invgroup.quotient_inv162,6543 + theorem is_equivalence_quotient_relgroup.is_equivalence_quotient_rel150,6091 + theorem free_group_mul_onegroup.free_group.free_group_mul_one342,12802 + theorem is_normal_subgroup_revgroup.is_normal_subgroup_rev45,1563 + structure no_confusiongroup.normal_subgroup_rel.no_confusion23,565 + structure subgroup_relgroup.subgroup_rel17,410 + definition group_free_groupgroup.group_free_group367,13543 + | ronegroup.generating_relation'.rone615,22950 + theorem fcg_mul_onegroup.free_comm_group.fcg_mul_one515,19108 + abbreviation subgroup_respect_invgroup.subgroup_respect_inv30,929 + definition free_group_hom_equiv_fngroup.free_group_hom_equiv_fn417,15520 + inductive cases_ongroup.free_comm_group.fcg_rel.cases_on434,16208 + theorem subgroup_mul_onegroup.subgroup_mul_one85,3366 + definition comm_productgroup.comm_product265,9929 + definition subgroup_mulgroup.subgroup_mul71,2957 + structure cases_ongroup.subgroup_rel.cases_on17,410 + definition quotient_mulgroup.quotient_mul164,6665 + +homotopy/fin.hlean,557 + definition my_succfin.my_succ30,720 +inductive is_succis_succ.rec13,236 + definition has_one_finfin.has_one_fin46,1254 + protected definition addfin.add40,1035 + definition has_add_finfin.has_add_fin49,1401 +definition is_succ_bit0is_succ_bit024,585 +inductive rec_onis_succ.rec_on13,236 +inductive is_succis_succ13,236 +| mkis_succ.mk14,268 +definition is_succ_add_rightis_succ_add_right18,339 +inductive cases_onis_succ.cases_on13,236 + definition has_zero_finfin.has_zero_fin43,1114 +definition is_succ_add_leftis_succ_add_left21,460 + +group_theory/basic.hlean,2779 + definition to_respect_mulgroup.to_respect_mul94,3090 + definition structgroup.homomorphism.struct88,2858 + mkgroup.homomorphism.mk82,2703 + definition comm_group_Group_of_CommGroupgroup.comm_group_Group_of_CommGroup30,953 + definition is_homomorphism_idgroup.is_homomorphism_id76,2559 + theorem to_respect_invgroup.to_respect_inv100,3245 + definition to_ginvgroup.to_ginv151,5068 + definition Set_of_Groupgroup.Set_of_Group25,788 + theorem respect_onegroup.respect_one51,1730 + definition pointed_Groupgroup.pointed_Group23,631 + definition precategory_groupgroup.precategory_group183,6085 + definition Group_of_CommGroupgroup.Group_of_CommGroup27,853 + structure destructgroup.homomorphism.destruct81,2660 + structure no_confusiongroup.homomorphism.no_confusion81,2660 + definition reflgroup.isomorphism.refl158,5270 + definition is_set_homomorphismgroup.is_set_homomorphism106,3462 + structure to_homgroup.isomorphism.to_hom140,4744 + mkgroup.isomorphism.mk141,4777 + theorem to_respect_onegroup.to_respect_one97,3182 + structure isomorphismgroup.isomorphism.rec140,4744 + definition transgroup.isomorphism.trans164,5502 + definition is_embedding_homomorphismgroup.is_embedding_homomorphism61,2062 + structure homomorphismgroup.homomorphism81,2660 + definition pmap_of_homomorphismgroup.pmap_of_homomorphism120,3991 + definition homomorphism_composegroup.homomorphism_compose131,4395 + theorem respect_invgroup.respect_inv58,1922 + definition group_fungroup.group_fun87,2794 + structure rec_ongroup.homomorphism.rec_on81,2660 + structure φgroup.homomorphism.φ81,2660 + definition homomorphism_eqgroup.homomorphism_eq123,4120 + definition to_is_embedding_homomorphismgroup.to_is_embedding_homomorphism103,3330 + definition equiv_of_isomorphismgroup.equiv_of_isomorphism148,4976 + structure no_confusiongroup.isomorphism.no_confusion140,4744 + definition symmgroup.isomorphism.symm161,5378 + structure destructgroup.isomorphism.destruct140,4744 + definition is_homomorphismgroup.is_homomorphism39,1242 + structure rec_ongroup.isomorphism.rec_on140,4744 + structure is_equiv_to_homgroup.isomorphism.is_equiv_to_hom140,4744 + structure isomorphismgroup.isomorphism140,4744 + definition homomorphism_idgroup.homomorphism_id134,4544 + structure homomorphismgroup.homomorphism.rec81,2660 + definition group_pType_of_Groupgroup.group_pType_of_Group34,1108 + definition respect_mulgroup.respect_mul48,1643 + definition pType_of_Groupgroup.pType_of_Group24,711 + structure cases_ongroup.homomorphism.cases_on81,2660 + definition is_homomorphism_composegroup.is_homomorphism_compose72,2369 + structure pgroup.homomorphism.p81,2660 + structure cases_ongroup.isomorphism.cases_on140,4744 + +homotopy/join_theorem.hlean,366 + protected definition introis_conn.intro51,1299 + definition is_retraction_composeretraction.is_retraction_compose11,231 + definition is_retraction_compose_equiv_leftretraction.is_retraction_compose_equiv_left27,703 +theorem is_conn_joinis_conn_join70,1667 + definition is_retraction_compose_equiv_rightretraction.is_retraction_compose_equiv_right32,871 + +homotopy/sec86.hlean,1825 +definition freudenthal_pequivfreudenthal_pequiv223,8078 + definition encode'freudenthal.encode'121,4379 + definition code_merid_inv_ptfreudenthal.code_merid_inv_pt92,3441 + definition upfreudenthal.up58,2252 + definition decodefreudenthal.decode174,6391 + definition decode_north_ptfreudenthal.decode_north_pt115,4165 + definition decode_coh_gfreudenthal.decode_coh_g148,5307 + definition psphere_succpsphere_succ47,1992 + theorem elim_type_merid_invelim_type_merid_inv36,1519 + definition decode_northfreudenthal.decode_north112,4042 + theorem decode_cohfreudenthal.decode_coh160,5802 + definition code_merid_cohfreudenthal.code_merid_coh76,2843 + definition equiv'freudenthal.equiv'188,6798 + definition decode_coh_lemfreudenthal.decode_coh_lem156,5625 +definition freudenthal_equivfreudenthal_equiv229,8371 + definition is_trunc_codefreudenthal.is_trunc_code103,3823 + definition code_meridfreudenthal.code_merid61,2360 + theorem encode_decode_northfreudenthal.encode_decode_north130,4628 + definition is_equiv_code_meridfreudenthal.is_equiv_code_merid81,3004 + definition is_conn_truncis_conn_trunc40,1776 + definition pequiv'freudenthal.pequiv'191,6935 + definition decode_southfreudenthal.decode_south118,4253 + definition encodefreudenthal.encode124,4469 + definition decode_coh_ffreudenthal.decode_coh_f139,4992 + definition code_merid_β_leftfreudenthal.code_merid_β_left70,2625 + definition stability_pequivsphere.stability_pequiv236,8573 + definition code_merid_equivfreudenthal.code_merid_equiv89,3312 + definition codefreudenthal.code100,3704 + theorem decode_encodefreudenthal.decode_encode182,6599 + definition code_merid_β_rightfreudenthal.code_merid_β_right73,2727 + definition iterated_loop_ptrunc_pequiv_coniterated_loop_ptrunc_pequiv_con23,1032 + +homotopy/chain_complex.hlean,5324 +definition sintsint36,1114 +structure carriersucc_str.carrier24,757 + structure mul_left_inv_ptchain_complex.pgroup.mul_left_inv_pt478,19042 + structure type_chain_complexchain_complex.type_chain_complex88,3028 + definition transfer_chain_complex2'chain_complex.transfer_chain_complex2'336,12565 + structure invchain_complex.pgroup.inv478,19042 +structure no_confusionsucc_str.no_confusion24,757 + definition cc_to_fnchain_complex.cc_to_fn248,9540 + definition transfer_chain_complexchain_complex.transfer_chain_complex280,10737 +definition stratifiedstratified57,1945 + structure cases_onchain_complex.chain_complex.cases_on239,9213 + definition is_exact_at_tchain_complex.is_exact_at_t103,3692 + definition whisker_left_idp_con_eq_assoceq.whisker_left_idp_con_eq_assoc17,554 + structure pgroupchain_complex.pgroup478,19042 +definition stratified_succstratified_succ53,1777 +definition snatsnat34,955 + definition cast_inv_castchain_complex.cast_inv_cast178,6596 + definition cast_cast_invchain_complex.cast_cast_inv174,6433 + definition is_surjective_of_trivialchain_complex.is_surjective_of_trivial516,20301 +structure succ_strsucc_str.rec24,757 + structure destructchain_complex.type_chain_complex.destruct88,3028 + theorem is_exact_at_transferchain_complex.is_exact_at_transfer292,11186 + structure is_set_carrierchain_complex.pgroup.is_set_carrier478,19042 + structure to_has_invchain_complex.pgroup.to_has_inv478,19042 + definition inv_commute1'chain_complex.inv_commute1'162,5796 + mksucc_str.mk25,778 + definition is_exact_tchain_complex.is_exact_t106,3821 + structure cases_onchain_complex.type_chain_complex.cases_on88,3028 + definition tcc_to_carchain_complex.tcc_to_car96,3299 +structure succsucc_str.succ24,757 + structure fnchain_complex.chain_complex.fn239,9213 + mkchain_complex.chain_complex.mk240,9256 + structure mul_assocchain_complex.pgroup.mul_assoc478,19042 + definition is_exact_at_truncchain_complex.is_exact_at_trunc324,12208 + definition is_embedding_of_trivialchain_complex.is_embedding_of_trivial501,19848 + definition cc_to_carchain_complex.cc_to_car247,9473 + definition inv_commute1chain_complex.inv_commute1166,6045 + definition is_equiv_of_trivialchain_complex.is_equiv_of_trivial524,20541 + definition is_exact_at_transfer2chain_complex.is_exact_at_transfer2201,7632 + definition transfer_type_chain_complexchain_complex.transfer_type_chain_complex130,4624 + structure rec_onchain_complex.pgroup.rec_on478,19042 + definition fn_cast_eq_cast_fnchain_complex.fn_cast_eq_cast_fn170,6235 + definition is_exact_atchain_complex.is_exact_at254,9852 + structure carchain_complex.type_chain_complex.car88,3028 +definition stratified_typestratified_type44,1365 + structure cases_onchain_complex.pgroup.cases_on478,19042 + structure destructchain_complex.pgroup.destruct478,19042 + definition is_exact_at_transfer2'chain_complex.is_exact_at_transfer2'357,13539 + mkchain_complex.type_chain_complex.mk89,3076 + definition trunc_chain_complexchain_complex.trunc_chain_complex312,11842 + definition is_exactchain_complex.is_exact257,9977 + definition tcc_is_chain_complexchain_complex.tcc_is_chain_complex98,3453 +definition sint'sint'37,1193 + structure is_chain_complexchain_complex.chain_complex.is_chain_complex239,9213 + definition group_of_pgroupchain_complex.group_of_pgroup483,19228 + structure chain_complexchain_complex.chain_complex239,9213 + structure chain_complexchain_complex.chain_complex.rec239,9213 + definition cc_is_chain_complexchain_complex.cc_is_chain_complex249,9618 + structure type_chain_complexchain_complex.type_chain_complex.rec88,3028 + structure no_confusionchain_complex.type_chain_complex.no_confusion88,3028 +definition snat'snat'35,1034 + structure destructchain_complex.chain_complex.destruct239,9213 + structure mul_ptchain_complex.pgroup.mul_pt478,19042 + structure pgroupchain_complex.pgroup.rec478,19042 + structure carchain_complex.chain_complex.car239,9213 + structure fnchain_complex.type_chain_complex.fn88,3028 +definition Ssucc_str.S30,875 + structure is_chain_complexchain_complex.type_chain_complex.is_chain_complex88,3028 + structure mulchain_complex.pgroup.mul478,19042 +structure cases_onsucc_str.cases_on24,757 + definition transfer_type_chain_complex2chain_complex.transfer_type_chain_complex2183,6842 + mkchain_complex.pgroup.mk479,19107 + definition pgroup_of_groupchain_complex.pgroup_of_group491,19482 +structure rec_onsucc_str.rec_on24,757 + definition tcc_to_fnchain_complex.tcc_to_fn97,3372 + structure rec_onchain_complex.type_chain_complex.rec_on88,3028 + structure no_confusionchain_complex.pgroup.no_confusion478,19042 + theorem is_exact_at_t_transferchain_complex.is_exact_at_t_transfer142,5091 + structure rec_onchain_complex.chain_complex.rec_on239,9213 +structure succ_strsucc_str24,757 + definition is_trunc_ptrunctypechain_complex.is_trunc_ptrunctype473,18817 + structure to_semigroupchain_complex.pgroup.to_semigroup478,19042 +structure destructsucc_str.destruct24,757 + definition transport_eq_Fl_idp_lefteq.transport_eq_Fl_idp_left13,386 + structure no_confusionchain_complex.chain_complex.no_confusion239,9213 + structure pt_mulchain_complex.pgroup.pt_mul478,19042 + +homotopy/spectrum.hlean,5800 +structure is_spectrumis_spectrum.rec187,9094 +structure destructgen_spectrum.destruct192,9275 + definition pequiv_postcomposepointed.pequiv_postcompose137,7133 +structure no_confusiongen_prespectrum.no_confusion181,8929 +structure gluegen_prespectrum.glue181,8929 + structure cases_onspectrum.sp_chain_complex.cases_on386,18262 + structure no_confusionspectrum.sp_chain_complex.no_confusion386,18262 + definition pequiv_precomposepointed.pequiv_precompose145,7584 + definition loop_pmap_commutepointed.loop_pmap_commute73,2970 +abbreviation mkspectrum.mk203,9684 + definition psp_of_gen_indexedspectrum.psp_of_gen_indexed248,11436 + structure shomotopyspectrum.shomotopy317,15315 + structure shomotopyspectrum.shomotopy.rec317,15315 +structure destructgen_prespectrum.destruct181,8929 + structure fnspectrum.sp_chain_complex.fn386,18262 + definition scc_to_carspectrum.scc_to_car394,18517 + structure sp_chain_complexspectrum.sp_chain_complex386,18262 + structure carspectrum.sp_chain_complex.car386,18262 + protected definition of_gen_indexedspectrum.of_gen_indexed257,11975 + definition shomotopy_groupspectrum.shomotopy_group356,16961 +structure cases_onis_spectrum.cases_on187,9094 +structure cases_ongen_spectrum.cases_on192,9275 + structure rec_onspectrum.sp_chain_complex.rec_on386,18262 + mkgen_prespectrum.mk182,8965 + definition ppcompose_leftpointed.ppcompose_left82,3567 +structure no_confusionis_spectrum.no_confusion187,9094 + definition scomposespectrum.scompose299,14044 +structure to_prespectrumgen_spectrum.to_prespectrum192,9275 + structure no_confusionspectrum.smap.no_confusion278,13041 + definition szerospectrum.szero311,14839 + structure cases_onspectrum.smap.cases_on278,13041 +structure gen_prespectrumgen_prespectrum.rec181,8929 + structure no_confusionspectrum.shomotopy.no_confusion317,15315 +abbreviation spectrumspectrum202,9643 + structure cases_onspectrum.shomotopy.cases_on317,15315 + definition scc_is_chain_complexspectrum.scc_is_chain_complex396,18670 + definition struncspectrum.strunc343,16403 + structure glue_squarespectrum.smap.glue_square278,13041 +structure destructis_spectrum.destruct187,9094 + structure smapspectrum.smap.rec278,13041 + definition pfiber_loop_spacepointed.pfiber_loop_space110,5185 + definition pequiv_composepointed.pequiv_compose35,1119 + definition psuspnspectrum.psuspn330,15866 + definition pmap_eq_equivpointed.pmap_eq_equiv58,1870 +structure deloopgen_prespectrum.deloop181,8929 + structure rec_onspectrum.shomotopy.rec_on317,15315 + definition transport_fiber_equivpointed.transport_fiber_equiv132,6798 + definition pcompose_pconstpointed.pcompose_pconst101,4763 + mkis_spectrum.mk188,9158 + definition sglue_squarespectrum.sglue_square288,13371 + definition equiv_ppcompose_leftpointed.equiv_ppcompose_left98,4631 + definition ap1_pconstpointed.ap1_pconst107,5048 + definition ppipointed.ppi160,8279 + structure glue_homotopyspectrum.shomotopy.glue_homotopy317,15315 +structure rec_ongen_spectrum.rec_on192,9275 + definition sigma_equiv_sigma_left'sigma.sigma_equiv_sigma_left'20,711 + definition is_spectrum_of_gen_indexedspectrum.is_spectrum_of_gen_indexed251,11679 + structure to_funspectrum.smap.to_fun278,13041 + definition pfiber_equiv_of_phomotopypointed.pfiber_equiv_of_phomotopy121,6291 + structure destructspectrum.sp_chain_complex.destruct386,18262 +structure gen_spectrumgen_spectrum.rec192,9275 + protected definition of_nat_indexedspectrum.of_nat_indexed237,10937 + protected definition MKspectrum.MK262,12282 + definition equiv_ppi_rightpointed.equiv_ppi_right166,8498 + definition scc_to_fnspectrum.scc_to_fn395,18590 +structure rec_onis_spectrum.rec_on187,9094 + structure destructspectrum.shomotopy.destruct317,15315 +structure gen_prespectrumgen_prespectrum181,8929 + definition is_spectrum_of_nat_indexedspectrum.is_spectrum_of_nat_indexed230,10636 + protected definition Mkspectrum.Mk270,12731 + definition equiv_gluespectrum.equiv_glue209,9865 + mkspectrum.smap.mk279,13094 + mkgen_spectrum.mk193,9308 +structure is_equiv_glueis_spectrum.is_equiv_glue187,9094 + definition gluespectrum.glue207,9753 + definition sigma_charpointed.phomotopy.sigma_char49,1559 + structure sp_chain_complexspectrum.sp_chain_complex.rec386,18262 + structure smapspectrum.smap278,13041 + mkspectrum.shomotopy.mk318,15388 +structure gen_spectrumgen_spectrum192,9275 + definition psp_suspspectrum.psp_susp335,16065 +structure is_spectrumis_spectrum187,9094 + structure is_chain_complexspectrum.sp_chain_complex.is_chain_complex386,18262 +structure cases_ongen_prespectrum.cases_on181,8929 + definition sfiberspectrum.sfiber382,18050 + definition of_natspectrum.succ_str.of_nat244,11289 + definition pathover_eq_Fl'eq.pathover_eq_Fl'28,913 +structure rec_ongen_prespectrum.rec_on181,8929 + definition pconst_pcomposepointed.pconst_pcompose104,4907 +structure no_confusiongen_spectrum.no_confusion192,9275 + structure rec_onspectrum.smap.rec_on278,13041 + mkspectrum.sp_chain_complex.mk387,18308 + definition sp_cotensorspectrum.sp_cotensor366,17352 + definition pfiber_equiv_of_squarepointed.pfiber_equiv_of_square154,7944 + structure destructspectrum.smap.destruct278,13041 + definition loop_ppi_commutepointed.loop_ppi_commute163,8361 + definition sidspectrum.sid293,13688 + structure to_phomotopyspectrum.shomotopy.to_phomotopy317,15315 +structure to_is_spectrumgen_spectrum.to_is_spectrum192,9275 + definition psp_of_nat_indexedspectrum.psp_of_nat_indexed216,10207 + definition spispectrum.spi374,17699 + definition sigma_charpointed.pmap.sigma_char40,1292 + definition is_equiv_ppcompose_leftpointed.is_equiv_ppcompose_left85,3741 + +algebra/module.hlean,3083 +mkleft_module.mk22,563 +structure destructleft_module.destruct20,467 +structure cases_onvector_space.cases_on72,2518 + proposition smul_zerosmul_zero50,1651 +structure rec_onleft_module.rec_on20,467 +structure mul_smulleft_module.mul_smul20,467 + proposition neg_one_smulneg_one_smul57,1961 +structure has_scalarhas_scalar13,339 +structure smul_left_distribvector_space.smul_left_distrib72,2518 +structure add_zerovector_space.add_zero72,2518 +structure cases_onhas_scalar.cases_on13,339 + proposition one_smulone_smul44,1413 +structure zero_addleft_module.zero_add20,467 +structure rec_onhas_scalar.rec_on13,339 +structure smulvector_space.smul72,2518 +structure addvector_space.add72,2518 +structure smul_left_distribleft_module.smul_left_distrib20,467 +structure left_moduleleft_module.rec20,467 + proposition mul_smulmul_smul41,1310 + proposition smul_left_distribsmul_left_distrib35,1074 +structure destructhas_scalar.destruct13,339 +structure smulleft_module.smul20,467 +structure negleft_module.neg20,467 +structure vector_spacevector_space72,2518 + proposition smul_negsmul_neg60,2054 +structure one_smulleft_module.one_smul20,467 +structure is_set_carrierleft_module.is_set_carrier20,467 +structure left_moduleleft_module20,467 +structure no_confusionleft_module.no_confusion20,467 + proposition neg_smulneg_smul54,1811 +structure no_confusionhas_scalar.no_confusion13,339 +structure destructvector_space.destruct72,2518 +structure add_commvector_space.add_comm72,2518 +structure mkvector_space.mk72,2518 +structure zero_addvector_space.zero_add72,2518 +structure zerovector_space.zero72,2518 +structure add_zeroleft_module.add_zero20,467 +structure smul_right_distribvector_space.smul_right_distrib72,2518 + proposition zero_smulzero_smul46,1488 +structure vector_spacevector_space.rec72,2518 +structure negvector_space.neg72,2518 +structure has_scalarhas_scalar.rec13,339 +structure add_assocvector_space.add_assoc72,2518 +structure one_smulvector_space.one_smul72,2518 +structure add_assocleft_module.add_assoc20,467 + proposition sub_smul_right_distribsub_smul_right_distrib66,2336 +structure zeroleft_module.zero20,467 +structure smul_right_distribleft_module.smul_right_distrib20,467 + proposition smul_right_distribsmul_right_distrib38,1191 +structure add_commleft_module.add_comm20,467 +structure is_set_carriervector_space.is_set_carrier72,2518 +structure add_left_invvector_space.add_left_inv72,2518 +structure cases_onleft_module.cases_on20,467 +structure rec_onvector_space.rec_on72,2518 +structure no_confusionvector_space.no_confusion72,2518 + proposition smul_sub_left_distribsmul_sub_left_distrib63,2189 +structure smulhas_scalar.smul13,339 +structure to_add_comm_groupleft_module.to_add_comm_group20,467 +structure mul_smulvector_space.mul_smul72,2518 +structure add_left_invleft_module.add_left_inv20,467 +mkhas_scalar.mk14,374 +structure addleft_module.add20,467 +structure to_left_modulevector_space.to_left_module72,2518 +structure to_has_scalarleft_module.to_has_scalar20,467 diff --git a/algebra/quotient_group.hlean b/algebra/quotient_group.hlean index e23c52e..d9bd6d5 100644 --- a/algebra/quotient_group.hlean +++ b/algebra/quotient_group.hlean @@ -17,6 +17,9 @@ namespace group /- Quotient Group -/ + definition homotopy_of_homomorphism_eq {f g : G →g G'}(p : f = g) : f ~ g := + λx : G , ap010 group_fun p x + definition quotient_rel (g h : G) : Prop := N (g * h⁻¹) variable {N} @@ -190,7 +193,7 @@ namespace group intro g, reflexivity end - definition glift_unique (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) (k : quotient_group N →g G') + definition gelim_unique (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) (k : quotient_group N →g G') : ( k ∘g gq_map N ~ f ) → k ~ quotient_group_elim f H := begin intro K cg, induction cg using set_quotient.rec_prop with g, @@ -200,7 +203,15 @@ namespace group definition gq_universal_property (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) : is_contr (Σ(g : quotient_group N →g G'), g ∘g gq_map N = f) := - sorry + begin + fapply is_contr.mk, + -- give center of contraction + { fapply sigma.mk, exact quotient_group_elim f H, apply homomorphism_eq, exact quotient_group_compute f H }, + -- give contraction + { intro pair, induction pair with g p, fapply sigma_eq, + {esimp, apply homomorphism_eq, symmetry, exact gelim_unique f H g (homotopy_of_homomorphism_eq p)}, + {fapply is_prop.elimo} } + end /- set generating normal subgroup -/ From 704717e9ae53b92da20e57bd8e50c2f8a2400ee7 Mon Sep 17 00:00:00 2001 From: Floris van Doorn Date: Thu, 3 Nov 2016 15:34:06 -0400 Subject: [PATCH 2/2] minor changes --- .gitignore | 1 + TAGS | 692 ----------------------------------------- algebra/subgroup.hlean | 11 +- homotopy/smash.hlean | 36 ++- move_to_lib.hlean | 17 +- 5 files changed, 57 insertions(+), 700 deletions(-) delete mode 100644 TAGS diff --git a/.gitignore b/.gitignore index 0c8c123..3a19649 100644 --- a/.gitignore +++ b/.gitignore @@ -13,6 +13,7 @@ GPATH GRTAGS GSYMS GTAGS +TAGS Makefile *.cmake CMakeFiles/ diff --git a/TAGS b/TAGS deleted file mode 100644 index f016d47..0000000 --- a/TAGS +++ /dev/null @@ -1,692 +0,0 @@ - -homotopy/spherical_fibrations.hlean,1152 - definition pointed_BFspherical_fibrations.pointed_BF50,1310 - definition pBGspherical_fibrations.pBG15,414 - definition BF_of_BG_mulspherical_fibrations.BF_of_BG_mul95,2692 - definition BFspherical_fibrations.BF47,1244 - definition thom_spacespherical_fibrations.thom.thom_space109,3059 - definition mirrorspherical_fibrations.mirror23,605 - definition Gspherical_fibrations.G17,484 - definition G_charspherical_fibrations.G_char20,537 - definition BG_mulspherical_fibrations.BG_mul78,2096 - definition BF_succspherical_fibrations.BF_succ55,1496 - definition BG_of_BFspherical_fibrations.BG_of_BF71,1919 - definition BF_of_BGspherical_fibrations.BF_of_BG62,1681 - protected definition secspherical_fibrations.thom.sec104,2964 - definition tauspherical_fibrations.two_sphere.tau144,4263 - definition BG_succspherical_fibrations.BG_succ39,1009 - definition pBFspherical_fibrations.pBF53,1426 - definition pointed_BGspherical_fibrations.pointed_BG12,301 - definition BF_mulspherical_fibrations.BF_mul87,2401 - definition BGspherical_fibrations.BG9,233 - definition S_of_BGspherical_fibrations.S_of_BG36,936 - -homotopy/homotopy_groups.hlean,743 - definition group_equiv_onemy.group_equiv_one44,1189 - theorem group_equiv_mul_assocmy.group_equiv_mul_assoc52,1423 - theorem group_equiv_mul_onemy.group_equiv_mul_one58,1710 - definition group_equiv_invmy.group_equiv_inv46,1234 - theorem ap1_conmy.ap1_con25,626 - theorem group_equiv_mul_left_invmy.group_equiv_mul_left_inv61,1852 - definition group_equiv_closedmy.group_equiv_closed65,2030 - theorem group_equiv_one_mulmy.group_equiv_one_mul55,1568 - definition group_equiv_mulmy.group_equiv_mul42,1118 - definition apn_composemy.apn_compose18,411 - definition apn_conmy.apn_con30,784 - definition homotopy_group_homomorphismeq.homotopy_group_homomorphism83,2503 - definition tr_mulmy.tr_mul34,931 - -homotopy/sample.hlean,1236 - definition is_conn_of_map_from_unithomotopy.is_conn_of_map_from_unit97,3227 - definition is_connhomotopy.is_conn12,308 - definition elimhomotopy.is_conn_fun.elim51,1665 - definition is_conn_homotopyhomotopy.is_conn_homotopy154,4935 - definition introhomotopy.is_conn_fun.intro70,2280 - definition is_conn_funhomotopy.is_conn_fun24,636 - definition rechomotopy.is_conn_fun.rec39,1224 - definition is_conn_of_map_to_unithomotopy.is_conn_of_map_to_unit88,2969 - definition merely_of_minus_one_connhomotopy.merely_of_minus_one_conn131,4268 - definition minus_one_conn_of_merelyhomotopy.minus_one_conn_of_merely134,4364 - definition is_conn_susphomotopy.is_conn_susp165,5320 - definition minus_one_conn_of_surjectivehomotopy.minus_one_conn_of_surjective117,3839 - definition is_conn_fun_from_unithomotopy.is_conn_fun_from_unit106,3534 - definition is_surjection_of_minus_one_connhomotopy.is_surjection_of_minus_one_conn124,4078 - definition is_conn_equiv_closedhomotopy.is_conn_equiv_closed15,404 - definition minus_two_connhomotopy.minus_two_conn159,5215 - definition elim_βhomotopy.is_conn_fun.elim_β54,1767 - definition retract_of_conn_is_connhomotopy.retract_of_conn_is_conn143,4572 - -homotopy/LES_applications.hlean,701 - definition add_plus_one_minus_oneis_conn.add_plus_one_minus_one110,4328 - definition add_plus_one_succis_conn.add_plus_one_succ111,4398 - definition eq_even_or_eq_oddnat.eq_even_or_eq_odd7,278 - definition join_empty_rightis_conn.join_empty_right87,3633 - definition succ_add_plus_oneis_conn.succ_add_plus_one114,4613 - definition rec_on_even_oddnat.rec_on_even_odd16,554 - theorem is_surjective_π_of_is_connectedis_conn.is_surjective_π_of_is_connected69,2838 - definition minus_one_add_plus_oneis_conn.minus_one_add_plus_one112,4480 - definition natural_square2is_conn.natural_square2102,4049 - theorem is_equiv_π_of_is_connectedis_conn.is_equiv_π_of_is_connected32,921 - -homotopy/LES_of_homotopy_groups.hlean,8241 - definition LES_of_homotopy_groups3_1chain_complex.LES_of_homotopy_groups3_1882,34115 - definition is_exact_LES_of_homotopy_groups3chain_complex.is_exact_LES_of_homotopy_groups3857,32991 - definition LES_of_homotopy_groups3_4chain_complex.LES_of_homotopy_groups3_4888,34446 - definition homotopy_groups_fun2chain_complex.homotopy_groups_fun2544,20051 - definition LES_of_homotopy_groups_mul3add2'chain_complex.LES_of_homotopy_groups_mul3add2'477,17839 - definition LES_of_homotopy_groups3_3chain_complex.LES_of_homotopy_groups3_3886,34336 - definition tr_mul_trchain_complex.tr_mul_tr500,18472 - definition is_exact_fiber_sequencechain_complex.is_exact_fiber_sequence80,2506 - definition boundary_mapchain_complex.boundary_map225,8385 - theorem fiber_sequence_fun_phomotopychain_complex.fiber_sequence_fun_phomotopy216,8057 - definition is_exact_LES_of_homotopy_groupschain_complex.is_exact_LES_of_homotopy_groups410,15146 - definition LES_of_homotopy_groups3_2chain_complex.LES_of_homotopy_groups3_2884,34221 - definition homotopy_groups_mul3add2chain_complex.homotopy_groups_mul3add2254,9279 - definition type_LES_of_homotopy_groupschain_complex.type_LES_of_homotopy_groups386,14323 - definition homotopy_groups_fun2_add1_5chain_complex.homotopy_groups_fun2_add1_5592,22238 - definition homotopy_groups_fun'chain_complex.homotopy_groups_fun'276,10198 - definition fin_prod_nat_equiv_natchain_complex.fin_prod_nat_equiv_nat620,23461 - definition fiber_sequence_helpernchain_complex.fiber_sequence_helpern54,1759 - theorem fiber_sequence_carrier_pequiv_eq_point_eq_idpchain_complex.fiber_sequence_carrier_pequiv_eq_point_eq_idp177,6559 - definition homotopy_groups_funchain_complex.homotopy_groups_fun260,9523 - definition fiber_sequence_carrierchain_complex.fiber_sequence_carrier62,1987 - definition homotopy_groups_fun_add3chain_complex.homotopy_groups_fun_add3312,11532 - definition comm_group_LES_of_homotopy_groupschain_complex.comm_group_LES_of_homotopy_groups486,18179 - definition LES_of_homotopy_groups2chain_complex.LES_of_homotopy_groups2779,30007 - definition LES_of_homotopy_groups_mul3add1chain_complex.LES_of_homotopy_groups_mul3add1451,17024 - definition homotopy_groups_add3chain_complex.homotopy_groups_add3240,8787 - definition LES_of_homotopy_groups3_0chain_complex.LES_of_homotopy_groups3_0880,34009 - definition homotopy_groups3eq2chain_complex.homotopy_groups3eq2794,30462 - definition fiber_sequence_helperchain_complex.fiber_sequence_helper50,1612 - definition homotopy_groups2_pequiv'chain_complex.homotopy_groups2_pequiv'641,24217 - definition fiber_sequence_carrier_equiv_inv_eqchain_complex.fiber_sequence_carrier_equiv_inv_eq125,4437 - definition homotopy_groups2chain_complex.homotopy_groups2526,19349 - definition fiber_sequence_pequiv_homotopy_groupschain_complex.fiber_sequence_pequiv_homotopy_groups319,11794 - definition is_homomorphism_cast_loop_space_succ_eq_inchain_complex.is_homomorphism_cast_loop_space_succ_eq_in504,18597 - definition fiber_sequence_funchain_complex.fiber_sequence_fun65,2078 - definition LES_of_homotopy_groups_mul3add1'chain_complex.LES_of_homotopy_groups_mul3add1'471,17652 - definition nat_of_str_6Schain_complex.nat_of_str_6S610,23009 - definition homotopy_groups_mul3chain_complex.homotopy_groups_mul3244,8912 - definition LES_of_homotopy_groupschain_complex.LES_of_homotopy_groups401,14827 - definition homotopy_groups_fun2_add1_4chain_complex.homotopy_groups_fun2_add1_4583,21862 - definition homotopy_groups3chain_complex.homotopy_groups3786,30178 - definition fiber_sequence_pequiv_homotopy_groups_3_phomotopychain_complex.fiber_sequence_pequiv_homotopy_groups_3_phomotopy336,12382 - definition homotopy_groupschain_complex.homotopy_groups234,8658 - definition homotopy_groups_fun2_add1_2chain_complex.homotopy_groups_fun2_add1_2565,21099 - definition homotopy_groups_fun2_phomotopychain_complex.homotopy_groups_fun2_phomotopy689,26060 - definition LES_of_homotopy_groups3_5chain_complex.LES_of_homotopy_groups3_5890,34556 - definition LES_of_homotopy_groups_fun3_1chain_complex.LES_of_homotopy_groups_fun3_1899,34906 - definition group_LES_of_homotopy_groups3_0chain_complex.group_LES_of_homotopy_groups3_0916,35755 - definition CommGroup_LES_of_homotopy_groups3chain_complex.CommGroup_LES_of_homotopy_groups3933,36775 - definition is_exact_type_LES_of_homotopy_groups2chain_complex.is_exact_type_LES_of_homotopy_groups2772,29801 - theorem homotopy_groups_fun_eqchain_complex.homotopy_groups_fun_eq287,10605 - definition LES_of_homotopy_groups_mul3'chain_complex.LES_of_homotopy_groups_mul3'465,17477 - definition LES_of_homotopy_groups_fun3_0chain_complex.LES_of_homotopy_groups_fun3_0896,34780 - definition comm_group_LES_of_homotopy_groups3chain_complex.comm_group_LES_of_homotopy_groups3923,36148 - definition homotopy_groups_fun2_add1_1chain_complex.homotopy_groups_fun2_add1_1560,20890 - definition fiber_sequence_pequiv_homotopy_groups_add3chain_complex.fiber_sequence_pequiv_homotopy_groups_add3331,12158 - definition homotopy_groups_fun'_add3chain_complex.homotopy_groups_fun'_add3283,10455 - definition is_homomorphism_inversechain_complex.is_homomorphism_inverse514,19037 - theorem fiber_sequence_fun_phomotopy_helperchain_complex.fiber_sequence_fun_phomotopy_helper194,7170 - definition homotopy_groups_fun_add6chain_complex.homotopy_groups_fun_add6270,9919 - definition LES_of_homotopy_groups_fun3_5chain_complex.LES_of_homotopy_groups_fun3_5911,35532 - theorem fiber_sequence_phomotopy_homotopy_groups'chain_complex.fiber_sequence_phomotopy_homotopy_groups'344,12670 - definition LES_of_homotopy_groups_fun3_4chain_complex.LES_of_homotopy_groups_fun3_4908,35381 - definition is_exact_type_LES_of_homotopy_groupschain_complex.is_exact_type_LES_of_homotopy_groups393,14582 - definition fiber_sequence_carrier_equiv_eqchain_complex.fiber_sequence_carrier_equiv_eq110,3830 - definition LES_of_homotopy_groups_mul3chain_complex.LES_of_homotopy_groups_mul3444,16814 - definition LES_of_homotopy_groups3chain_complex.LES_of_homotopy_groups3850,32786 - theorem fiber_sequence_phomotopy_homotopy_groupschain_complex.fiber_sequence_phomotopy_homotopy_groups377,13934 - definition LES_of_homotopy_groups_mul3add2chain_complex.LES_of_homotopy_groups_mul3add2458,17246 - definition homotopy_groups_fun3chain_complex.homotopy_groups_fun3804,30894 - definition homotopy_groups_mul3add1chain_complex.homotopy_groups_mul3add1249,9089 - definition fiber_sequence_carrier_pequiv_inv_eqchain_complex.fiber_sequence_carrier_pequiv_inv_eq149,5360 - definition fiber_sequence_carrier_pequivchain_complex.fiber_sequence_carrier_pequiv134,4778 - theorem fiber_sequence_fun_eqchain_complex.fiber_sequence_fun_eq208,7685 - definition fiber_sequence_carrier_equivchain_complex.fiber_sequence_carrier_equiv84,2664 - definition nat_of_strchain_complex.nat_of_str604,22800 - definition fiber_sequencechain_complex.fiber_sequence70,2251 - definition str_of_natchain_complex.str_of_nat607,22917 - definition homomorphism_LES_of_homotopy_groups_fun3chain_complex.homomorphism_LES_of_homotopy_groups_fun3937,36984 - definition homotopy_groups_fun3eq2chain_complex.homotopy_groups_fun3eq2816,31572 - definition homotopy_groups_fun2_add1_0chain_complex.homotopy_groups_fun2_add1_0555,20681 - definition fiber_sequence_fun_eq_helperchain_complex.fiber_sequence_fun_eq_helper157,5693 - definition homotopy_groups2_add1chain_complex.homotopy_groups2_add1534,19628 - definition homotopy_groups_fun2_add1_3chain_complex.homotopy_groups_fun2_add1_3574,21486 - definition LES_of_homotopy_groups_fun3_3chain_complex.LES_of_homotopy_groups_fun3_3905,35239 - definition LES_of_homotopy_groups_fun3_2chain_complex.LES_of_homotopy_groups_fun3_2902,35041 - definition type_LES_of_homotopy_groups2chain_complex.type_LES_of_homotopy_groups2758,29331 - definition homotopy_groups2_pequivchain_complex.homotopy_groups2_pequiv684,25855 - definition group_LES_of_homotopy_groupschain_complex.group_LES_of_homotopy_groups483,18035 - definition fiber_sequence_carrier_pequiv_eqchain_complex.fiber_sequence_carrier_pequiv_eq142,5004 - -group_theory/constructions.hlean,10223 - definition normal_subgroup_kernelgroup.normal_subgroup_kernel721,26462 - structure Rinvgroup.normal_subgroup_rel.Rinv23,565 - | rinvgroup.generating_relation'.rinv614,22880 - | rreflgroup.free_comm_group.fcg_rel.rrefl435,16260 - definition fcg_mulgroup.free_comm_group.fcg_mul492,18417 - theorem subgroup_one_mulgroup.subgroup_one_mul82,3290 - structure rec_ongroup.normal_subgroup_rel.rec_on23,565 - definition quotient_comm_group_gengroup.quotient_comm_group_gen633,23558 - structure Rgroup.subgroup_rel.R17,410 - theorem kernel_mulgroup.kernel_mul680,25173 - definition sggroup.sg65,2698 - theorem subgroup_mul_assocgroup.subgroup_mul_assoc79,3183 - | rmulgroup.generating_relation'.rmul613,22779 - definition subgroup_onegroup.subgroup_one68,2786 - definition is_reflexive_Rgroup.free_group.is_reflexive_R290,10899 - inductive cases_ongroup.free_group.free_group_rel.cases_on274,10175 - abbreviation subgroup_has_onegroup.subgroup_has_one28,791 - definition free_group_onegroup.free_group.free_group_one315,11815 - theorem quotient_rel_symmgroup.quotient_rel_symm120,4459 - | resp_appendgroup.free_group.free_group_rel.resp_append278,10373 - definition fcg_carriergroup.free_comm_group.fcg_carrier449,16786 - definition group_qggroup.group_qg210,7984 - theorem product_one_mulgroup.product_one_mul240,9105 - definition free_group_inclusiongroup.free_group_inclusion376,13925 - structure destructgroup.subgroup_rel.destruct17,410 - definition free_comm_group_inclusiongroup.free_comm_group_inclusion560,20652 - theorem free_group_mul_left_invgroup.free_group.free_group_mul_left_inv348,12968 - definition group_prodgroup.group_prod255,9511 - | rtransgroup.free_group.free_group_rel.rtrans280,10519 - definition free_comm_group_homgroup.free_comm_group_hom575,21250 - definition normal_generating_relationgroup.normal_generating_relation625,23357 - definition free_comm_groupgroup.free_comm_group555,20471 - structure to_subgroup_relgroup.normal_subgroup_rel.to_subgroup_rel23,565 - definition free_group_invgroup.free_group.free_group_inv316,11879 - structure Rmulgroup.normal_subgroup_rel.Rmul23,565 - theorem rel_respect_reversegroup.free_comm_group.rel_respect_reverse468,17493 - theorem free_group_mul_assocgroup.free_group.free_group_mul_assoc327,12349 - structure normal_subgroup_relgroup.normal_subgroup_rel23,565 - definition gr_mulgroup.gr_mul622,23272 - theorem product_mul_assocgroup.product_mul_assoc237,8989 - definition quotient_comm_groupgroup.quotient_comm_group221,8428 - theorem fcg_one_mulgroup.free_comm_group.fcg_one_mul509,18950 - abbreviation subgroup_respect_mulgroup.subgroup_respect_mul29,860 - definition comm_group_prodgroup.comm_group_prod262,9779 - inductive fcg_relgroup.free_comm_group.fcg_rel.rec434,16208 - definition quotient_relgroup.quotient_rel115,4268 - inductive dirsum_relgroup.dirsum_rel643,23866 - theorem quotient_mul_assocgroup.quotient_mul_assoc172,6919 - theorem product_mul_commgroup.product_mul_comm249,9371 - definition subgroupgroup.subgroup102,3873 - theorem fgh_helper_respect_comm_relgroup.fgh_helper_respect_comm_rel563,20753 - theorem quotient_rel_transgroup.quotient_rel_trans123,4623 - definition kernelgroup.kernel678,25082 - definition qggroup.qg157,6375 - definition comm_subgroupgroup.comm_subgroup109,4111 - definition direct_sumgroup.direct_sum646,23998 - structure normal_subgroup_relgroup.normal_subgroup_rel.rec23,565 - definition gr_invgroup.gr_inv620,23198 - theorem rel_cons_concatgroup.free_comm_group.rel_cons_concat479,17905 - theorem fgh_helper_mulgroup.fgh_helper_mul393,14566 - definition comm_group_sggroup.comm_group_sg105,3947 - | resp_appendgroup.free_comm_group.fcg_rel.resp_append439,16420 - definition fn_of_free_group_homgroup.fn_of_free_group_hom413,15391 - theorem fcg_mul_assocgroup.free_comm_group.fcg_mul_assoc500,18669 - theorem product_mul_left_invgroup.product_mul_left_inv246,9271 - definition comm_group_qggroup.comm_group_qg217,8257 - definition normal_subgroup_rel_commgroup.normal_subgroup_rel_comm39,1314 - | cancel1group.free_comm_group.fcg_rel.cancel1436,16290 - definition fgh_helpergroup.fgh_helper379,14019 - definition product_onegroup.product_one226,8642 - mkgroup.normal_subgroup_rel.mk24,627 - definition generating_relationgroup.generating_relation617,23026 - | cancel2group.free_group.free_group_rel.cancel2277,10322 - | rmkgroup.dirsum_rel.rmk644,23910 - structure no_confusiongroup.subgroup_rel.no_confusion17,410 - inductive rec_ongroup.free_comm_group.fcg_rel.rec_on434,16208 - theorem is_normal_subgroup_kernelgroup.is_normal_subgroup_kernel707,25917 - theorem fgh_helper_respect_relgroup.fgh_helper_respect_rel382,14131 - abbreviation is_normal_subgroupgroup.is_normal_subgroup31,998 - | rinclgroup.generating_relation'.rincl612,22730 - definition free_group_carriergroup.free_group.free_group_carrier287,10767 - theorem quotient_mul_onegroup.quotient_mul_one187,7357 - | rtransgroup.free_comm_group.fcg_rel.rtrans441,16545 - structure Rinvgroup.subgroup_rel.Rinv17,410 - definition fn_of_free_comm_group_homgroup.fn_of_free_comm_group_hom586,21759 - mkgroup.subgroup_rel.mk18,442 - definition gr_onegroup.gr_one619,23155 - theorem is_normal_subgroup_rev'group.is_normal_subgroup_rev'52,1969 - structure subgroup_relgroup.subgroup_rel.rec17,410 - structure Rgroup.normal_subgroup_rel.R23,565 - inductive fcg_relgroup.free_comm_group.fcg_rel434,16208 - definition quotient_onegroup.quotient_one161,6480 - theorem quotient_rel_reflgroup.quotient_rel_refl118,4339 - theorem product_mul_onegroup.product_mul_one243,9188 - definition free_comm_group_hom_equiv_fngroup.free_comm_group_hom_equiv_fn590,21903 - definition subgroup_kernelgroup.subgroup_kernel699,25721 - | cancel1group.free_group.free_group_rel.cancel1276,10271 - definition product_mulgroup.product_mul229,8782 - theorem quotient_rel_resp_mulgroup.quotient_rel_resp_mul140,5543 - definition free_groupgroup.free_group371,13774 - theorem is_normal_subgroup'group.is_normal_subgroup'36,1200 - definition productgroup.product259,9701 - definition free_group_homgroup.free_group_hom402,14897 - theorem normal_subgroup_insertgroup.normal_subgroup_insert55,2094 - theorem quotient_mul_left_invgroup.quotient_mul_left_inv193,7512 - structure Rmulgroup.subgroup_rel.Rmul17,410 - theorem quotient_rel_resp_invgroup.quotient_rel_resp_inv131,5061 - theorem fcg_mul_commgroup.free_comm_group.fcg_mul_comm536,19740 - definition group_free_comm_groupgroup.group_free_comm_group551,20268 - inductive cases_ongroup.dirsum_rel.cases_on643,23866 - structure Ronegroup.normal_subgroup_rel.Rone23,565 - structure is_normalgroup.normal_subgroup_rel.is_normal23,565 - abbreviation subgroup_to_relgroup.subgroup_to_rel27,725 - definition is_reflexive_Rgroup.free_comm_group.is_reflexive_R452,16904 - structure cases_ongroup.normal_subgroup_rel.cases_on23,565 - | rflipgroup.free_comm_group.fcg_rel.rflip438,16378 - definition product_invgroup.product_inv227,8704 - structure Ronegroup.subgroup_rel.Rone17,410 - | cancel2group.free_comm_group.fcg_rel.cancel2437,16334 - inductive free_group_relgroup.free_group.free_group_rel274,10175 - definition group_sggroup.group_sg98,3680 - definition subgroup_invgroup.subgroup_inv69,2861 - theorem rel_respect_reversegroup.free_group.rel_respect_reverse305,11444 - inductive dirsum_relgroup.dirsum_rel.rec643,23866 - definition quotient_groupgroup.quotient_group214,8177 - definition free_group_mulgroup.free_group.free_group_mul319,12069 - definition dirsum_carriergroup.dirsum_carrier641,23724 - inductive rec_ongroup.generating_relation'.rec_on611,22688 - structure destructgroup.normal_subgroup_rel.destruct23,565 - inductive generating_relation'group.generating_relation'611,22688 - theorem quotient_mul_commgroup.quotient_mul_comm199,7679 - theorem kernel_invgroup.kernel_inv690,25493 - inductive rec_ongroup.free_group.free_group_rel.rec_on274,10175 - theorem free_group_one_mulgroup.free_group.free_group_one_mul336,12637 - theorem rel_respect_flipgroup.free_comm_group.rel_respect_flip457,17078 - inductive free_group_relgroup.free_group.free_group_rel.rec274,10175 - inductive cases_ongroup.generating_relation'.cases_on611,22688 - definition fcg_invgroup.free_comm_group.fcg_inv489,18234 - theorem subgroup_mul_commgroup.subgroup_mul_comm91,3530 - inductive rec_ongroup.dirsum_rel.rec_on643,23866 - definition fcg_onegroup.free_comm_group.fcg_one488,18177 - structure rec_ongroup.subgroup_rel.rec_on17,410 - theorem subgroup_mul_left_invgroup.subgroup_mul_left_inv88,3442 - theorem fcg_mul_left_invgroup.free_comm_group.fcg_mul_left_inv521,19267 - theorem rel_respect_flipgroup.free_group.rel_respect_flip295,11073 - | rreflgroup.free_group.free_group_rel.rrefl275,10234 - inductive generating_relation'group.generating_relation'.rec611,22688 - theorem quotient_one_mulgroup.quotient_one_mul181,7202 - definition quotient_invgroup.quotient_inv162,6543 - theorem is_equivalence_quotient_relgroup.is_equivalence_quotient_rel150,6091 - theorem free_group_mul_onegroup.free_group.free_group_mul_one342,12802 - theorem is_normal_subgroup_revgroup.is_normal_subgroup_rev45,1563 - structure no_confusiongroup.normal_subgroup_rel.no_confusion23,565 - structure subgroup_relgroup.subgroup_rel17,410 - definition group_free_groupgroup.group_free_group367,13543 - | ronegroup.generating_relation'.rone615,22950 - theorem fcg_mul_onegroup.free_comm_group.fcg_mul_one515,19108 - abbreviation subgroup_respect_invgroup.subgroup_respect_inv30,929 - definition free_group_hom_equiv_fngroup.free_group_hom_equiv_fn417,15520 - inductive cases_ongroup.free_comm_group.fcg_rel.cases_on434,16208 - theorem subgroup_mul_onegroup.subgroup_mul_one85,3366 - definition comm_productgroup.comm_product265,9929 - definition subgroup_mulgroup.subgroup_mul71,2957 - structure cases_ongroup.subgroup_rel.cases_on17,410 - definition quotient_mulgroup.quotient_mul164,6665 - -homotopy/fin.hlean,557 - definition my_succfin.my_succ30,720 -inductive is_succis_succ.rec13,236 - definition has_one_finfin.has_one_fin46,1254 - protected definition addfin.add40,1035 - definition has_add_finfin.has_add_fin49,1401 -definition is_succ_bit0is_succ_bit024,585 -inductive rec_onis_succ.rec_on13,236 -inductive is_succis_succ13,236 -| mkis_succ.mk14,268 -definition is_succ_add_rightis_succ_add_right18,339 -inductive cases_onis_succ.cases_on13,236 - definition has_zero_finfin.has_zero_fin43,1114 -definition is_succ_add_leftis_succ_add_left21,460 - -group_theory/basic.hlean,2779 - definition to_respect_mulgroup.to_respect_mul94,3090 - definition structgroup.homomorphism.struct88,2858 - mkgroup.homomorphism.mk82,2703 - definition comm_group_Group_of_CommGroupgroup.comm_group_Group_of_CommGroup30,953 - definition is_homomorphism_idgroup.is_homomorphism_id76,2559 - theorem to_respect_invgroup.to_respect_inv100,3245 - definition to_ginvgroup.to_ginv151,5068 - definition Set_of_Groupgroup.Set_of_Group25,788 - theorem respect_onegroup.respect_one51,1730 - definition pointed_Groupgroup.pointed_Group23,631 - definition precategory_groupgroup.precategory_group183,6085 - definition Group_of_CommGroupgroup.Group_of_CommGroup27,853 - structure destructgroup.homomorphism.destruct81,2660 - structure no_confusiongroup.homomorphism.no_confusion81,2660 - definition reflgroup.isomorphism.refl158,5270 - definition is_set_homomorphismgroup.is_set_homomorphism106,3462 - structure to_homgroup.isomorphism.to_hom140,4744 - mkgroup.isomorphism.mk141,4777 - theorem to_respect_onegroup.to_respect_one97,3182 - structure isomorphismgroup.isomorphism.rec140,4744 - definition transgroup.isomorphism.trans164,5502 - definition is_embedding_homomorphismgroup.is_embedding_homomorphism61,2062 - structure homomorphismgroup.homomorphism81,2660 - definition pmap_of_homomorphismgroup.pmap_of_homomorphism120,3991 - definition homomorphism_composegroup.homomorphism_compose131,4395 - theorem respect_invgroup.respect_inv58,1922 - definition group_fungroup.group_fun87,2794 - structure rec_ongroup.homomorphism.rec_on81,2660 - structure φgroup.homomorphism.φ81,2660 - definition homomorphism_eqgroup.homomorphism_eq123,4120 - definition to_is_embedding_homomorphismgroup.to_is_embedding_homomorphism103,3330 - definition equiv_of_isomorphismgroup.equiv_of_isomorphism148,4976 - structure no_confusiongroup.isomorphism.no_confusion140,4744 - definition symmgroup.isomorphism.symm161,5378 - structure destructgroup.isomorphism.destruct140,4744 - definition is_homomorphismgroup.is_homomorphism39,1242 - structure rec_ongroup.isomorphism.rec_on140,4744 - structure is_equiv_to_homgroup.isomorphism.is_equiv_to_hom140,4744 - structure isomorphismgroup.isomorphism140,4744 - definition homomorphism_idgroup.homomorphism_id134,4544 - structure homomorphismgroup.homomorphism.rec81,2660 - definition group_pType_of_Groupgroup.group_pType_of_Group34,1108 - definition respect_mulgroup.respect_mul48,1643 - definition pType_of_Groupgroup.pType_of_Group24,711 - structure cases_ongroup.homomorphism.cases_on81,2660 - definition is_homomorphism_composegroup.is_homomorphism_compose72,2369 - structure pgroup.homomorphism.p81,2660 - structure cases_ongroup.isomorphism.cases_on140,4744 - -homotopy/join_theorem.hlean,366 - protected definition introis_conn.intro51,1299 - definition is_retraction_composeretraction.is_retraction_compose11,231 - definition is_retraction_compose_equiv_leftretraction.is_retraction_compose_equiv_left27,703 -theorem is_conn_joinis_conn_join70,1667 - definition is_retraction_compose_equiv_rightretraction.is_retraction_compose_equiv_right32,871 - -homotopy/sec86.hlean,1825 -definition freudenthal_pequivfreudenthal_pequiv223,8078 - definition encode'freudenthal.encode'121,4379 - definition code_merid_inv_ptfreudenthal.code_merid_inv_pt92,3441 - definition upfreudenthal.up58,2252 - definition decodefreudenthal.decode174,6391 - definition decode_north_ptfreudenthal.decode_north_pt115,4165 - definition decode_coh_gfreudenthal.decode_coh_g148,5307 - definition psphere_succpsphere_succ47,1992 - theorem elim_type_merid_invelim_type_merid_inv36,1519 - definition decode_northfreudenthal.decode_north112,4042 - theorem decode_cohfreudenthal.decode_coh160,5802 - definition code_merid_cohfreudenthal.code_merid_coh76,2843 - definition equiv'freudenthal.equiv'188,6798 - definition decode_coh_lemfreudenthal.decode_coh_lem156,5625 -definition freudenthal_equivfreudenthal_equiv229,8371 - definition is_trunc_codefreudenthal.is_trunc_code103,3823 - definition code_meridfreudenthal.code_merid61,2360 - theorem encode_decode_northfreudenthal.encode_decode_north130,4628 - definition is_equiv_code_meridfreudenthal.is_equiv_code_merid81,3004 - definition is_conn_truncis_conn_trunc40,1776 - definition pequiv'freudenthal.pequiv'191,6935 - definition decode_southfreudenthal.decode_south118,4253 - definition encodefreudenthal.encode124,4469 - definition decode_coh_ffreudenthal.decode_coh_f139,4992 - definition code_merid_β_leftfreudenthal.code_merid_β_left70,2625 - definition stability_pequivsphere.stability_pequiv236,8573 - definition code_merid_equivfreudenthal.code_merid_equiv89,3312 - definition codefreudenthal.code100,3704 - theorem decode_encodefreudenthal.decode_encode182,6599 - definition code_merid_β_rightfreudenthal.code_merid_β_right73,2727 - definition iterated_loop_ptrunc_pequiv_coniterated_loop_ptrunc_pequiv_con23,1032 - -homotopy/chain_complex.hlean,5324 -definition sintsint36,1114 -structure carriersucc_str.carrier24,757 - structure mul_left_inv_ptchain_complex.pgroup.mul_left_inv_pt478,19042 - structure type_chain_complexchain_complex.type_chain_complex88,3028 - definition transfer_chain_complex2'chain_complex.transfer_chain_complex2'336,12565 - structure invchain_complex.pgroup.inv478,19042 -structure no_confusionsucc_str.no_confusion24,757 - definition cc_to_fnchain_complex.cc_to_fn248,9540 - definition transfer_chain_complexchain_complex.transfer_chain_complex280,10737 -definition stratifiedstratified57,1945 - structure cases_onchain_complex.chain_complex.cases_on239,9213 - definition is_exact_at_tchain_complex.is_exact_at_t103,3692 - definition whisker_left_idp_con_eq_assoceq.whisker_left_idp_con_eq_assoc17,554 - structure pgroupchain_complex.pgroup478,19042 -definition stratified_succstratified_succ53,1777 -definition snatsnat34,955 - definition cast_inv_castchain_complex.cast_inv_cast178,6596 - definition cast_cast_invchain_complex.cast_cast_inv174,6433 - definition is_surjective_of_trivialchain_complex.is_surjective_of_trivial516,20301 -structure succ_strsucc_str.rec24,757 - structure destructchain_complex.type_chain_complex.destruct88,3028 - theorem is_exact_at_transferchain_complex.is_exact_at_transfer292,11186 - structure is_set_carrierchain_complex.pgroup.is_set_carrier478,19042 - structure to_has_invchain_complex.pgroup.to_has_inv478,19042 - definition inv_commute1'chain_complex.inv_commute1'162,5796 - mksucc_str.mk25,778 - definition is_exact_tchain_complex.is_exact_t106,3821 - structure cases_onchain_complex.type_chain_complex.cases_on88,3028 - definition tcc_to_carchain_complex.tcc_to_car96,3299 -structure succsucc_str.succ24,757 - structure fnchain_complex.chain_complex.fn239,9213 - mkchain_complex.chain_complex.mk240,9256 - structure mul_assocchain_complex.pgroup.mul_assoc478,19042 - definition is_exact_at_truncchain_complex.is_exact_at_trunc324,12208 - definition is_embedding_of_trivialchain_complex.is_embedding_of_trivial501,19848 - definition cc_to_carchain_complex.cc_to_car247,9473 - definition inv_commute1chain_complex.inv_commute1166,6045 - definition is_equiv_of_trivialchain_complex.is_equiv_of_trivial524,20541 - definition is_exact_at_transfer2chain_complex.is_exact_at_transfer2201,7632 - definition transfer_type_chain_complexchain_complex.transfer_type_chain_complex130,4624 - structure rec_onchain_complex.pgroup.rec_on478,19042 - definition fn_cast_eq_cast_fnchain_complex.fn_cast_eq_cast_fn170,6235 - definition is_exact_atchain_complex.is_exact_at254,9852 - structure carchain_complex.type_chain_complex.car88,3028 -definition stratified_typestratified_type44,1365 - structure cases_onchain_complex.pgroup.cases_on478,19042 - structure destructchain_complex.pgroup.destruct478,19042 - definition is_exact_at_transfer2'chain_complex.is_exact_at_transfer2'357,13539 - mkchain_complex.type_chain_complex.mk89,3076 - definition trunc_chain_complexchain_complex.trunc_chain_complex312,11842 - definition is_exactchain_complex.is_exact257,9977 - definition tcc_is_chain_complexchain_complex.tcc_is_chain_complex98,3453 -definition sint'sint'37,1193 - structure is_chain_complexchain_complex.chain_complex.is_chain_complex239,9213 - definition group_of_pgroupchain_complex.group_of_pgroup483,19228 - structure chain_complexchain_complex.chain_complex239,9213 - structure chain_complexchain_complex.chain_complex.rec239,9213 - definition cc_is_chain_complexchain_complex.cc_is_chain_complex249,9618 - structure type_chain_complexchain_complex.type_chain_complex.rec88,3028 - structure no_confusionchain_complex.type_chain_complex.no_confusion88,3028 -definition snat'snat'35,1034 - structure destructchain_complex.chain_complex.destruct239,9213 - structure mul_ptchain_complex.pgroup.mul_pt478,19042 - structure pgroupchain_complex.pgroup.rec478,19042 - structure carchain_complex.chain_complex.car239,9213 - structure fnchain_complex.type_chain_complex.fn88,3028 -definition Ssucc_str.S30,875 - structure is_chain_complexchain_complex.type_chain_complex.is_chain_complex88,3028 - structure mulchain_complex.pgroup.mul478,19042 -structure cases_onsucc_str.cases_on24,757 - definition transfer_type_chain_complex2chain_complex.transfer_type_chain_complex2183,6842 - mkchain_complex.pgroup.mk479,19107 - definition pgroup_of_groupchain_complex.pgroup_of_group491,19482 -structure rec_onsucc_str.rec_on24,757 - definition tcc_to_fnchain_complex.tcc_to_fn97,3372 - structure rec_onchain_complex.type_chain_complex.rec_on88,3028 - structure no_confusionchain_complex.pgroup.no_confusion478,19042 - theorem is_exact_at_t_transferchain_complex.is_exact_at_t_transfer142,5091 - structure rec_onchain_complex.chain_complex.rec_on239,9213 -structure succ_strsucc_str24,757 - definition is_trunc_ptrunctypechain_complex.is_trunc_ptrunctype473,18817 - structure to_semigroupchain_complex.pgroup.to_semigroup478,19042 -structure destructsucc_str.destruct24,757 - definition transport_eq_Fl_idp_lefteq.transport_eq_Fl_idp_left13,386 - structure no_confusionchain_complex.chain_complex.no_confusion239,9213 - structure pt_mulchain_complex.pgroup.pt_mul478,19042 - -homotopy/spectrum.hlean,5800 -structure is_spectrumis_spectrum.rec187,9094 -structure destructgen_spectrum.destruct192,9275 - definition pequiv_postcomposepointed.pequiv_postcompose137,7133 -structure no_confusiongen_prespectrum.no_confusion181,8929 -structure gluegen_prespectrum.glue181,8929 - structure cases_onspectrum.sp_chain_complex.cases_on386,18262 - structure no_confusionspectrum.sp_chain_complex.no_confusion386,18262 - definition pequiv_precomposepointed.pequiv_precompose145,7584 - definition loop_pmap_commutepointed.loop_pmap_commute73,2970 -abbreviation mkspectrum.mk203,9684 - definition psp_of_gen_indexedspectrum.psp_of_gen_indexed248,11436 - structure shomotopyspectrum.shomotopy317,15315 - structure shomotopyspectrum.shomotopy.rec317,15315 -structure destructgen_prespectrum.destruct181,8929 - structure fnspectrum.sp_chain_complex.fn386,18262 - definition scc_to_carspectrum.scc_to_car394,18517 - structure sp_chain_complexspectrum.sp_chain_complex386,18262 - structure carspectrum.sp_chain_complex.car386,18262 - protected definition of_gen_indexedspectrum.of_gen_indexed257,11975 - definition shomotopy_groupspectrum.shomotopy_group356,16961 -structure cases_onis_spectrum.cases_on187,9094 -structure cases_ongen_spectrum.cases_on192,9275 - structure rec_onspectrum.sp_chain_complex.rec_on386,18262 - mkgen_prespectrum.mk182,8965 - definition ppcompose_leftpointed.ppcompose_left82,3567 -structure no_confusionis_spectrum.no_confusion187,9094 - definition scomposespectrum.scompose299,14044 -structure to_prespectrumgen_spectrum.to_prespectrum192,9275 - structure no_confusionspectrum.smap.no_confusion278,13041 - definition szerospectrum.szero311,14839 - structure cases_onspectrum.smap.cases_on278,13041 -structure gen_prespectrumgen_prespectrum.rec181,8929 - structure no_confusionspectrum.shomotopy.no_confusion317,15315 -abbreviation spectrumspectrum202,9643 - structure cases_onspectrum.shomotopy.cases_on317,15315 - definition scc_is_chain_complexspectrum.scc_is_chain_complex396,18670 - definition struncspectrum.strunc343,16403 - structure glue_squarespectrum.smap.glue_square278,13041 -structure destructis_spectrum.destruct187,9094 - structure smapspectrum.smap.rec278,13041 - definition pfiber_loop_spacepointed.pfiber_loop_space110,5185 - definition pequiv_composepointed.pequiv_compose35,1119 - definition psuspnspectrum.psuspn330,15866 - definition pmap_eq_equivpointed.pmap_eq_equiv58,1870 -structure deloopgen_prespectrum.deloop181,8929 - structure rec_onspectrum.shomotopy.rec_on317,15315 - definition transport_fiber_equivpointed.transport_fiber_equiv132,6798 - definition pcompose_pconstpointed.pcompose_pconst101,4763 - mkis_spectrum.mk188,9158 - definition sglue_squarespectrum.sglue_square288,13371 - definition equiv_ppcompose_leftpointed.equiv_ppcompose_left98,4631 - definition ap1_pconstpointed.ap1_pconst107,5048 - definition ppipointed.ppi160,8279 - structure glue_homotopyspectrum.shomotopy.glue_homotopy317,15315 -structure rec_ongen_spectrum.rec_on192,9275 - definition sigma_equiv_sigma_left'sigma.sigma_equiv_sigma_left'20,711 - definition is_spectrum_of_gen_indexedspectrum.is_spectrum_of_gen_indexed251,11679 - structure to_funspectrum.smap.to_fun278,13041 - definition pfiber_equiv_of_phomotopypointed.pfiber_equiv_of_phomotopy121,6291 - structure destructspectrum.sp_chain_complex.destruct386,18262 -structure gen_spectrumgen_spectrum.rec192,9275 - protected definition of_nat_indexedspectrum.of_nat_indexed237,10937 - protected definition MKspectrum.MK262,12282 - definition equiv_ppi_rightpointed.equiv_ppi_right166,8498 - definition scc_to_fnspectrum.scc_to_fn395,18590 -structure rec_onis_spectrum.rec_on187,9094 - structure destructspectrum.shomotopy.destruct317,15315 -structure gen_prespectrumgen_prespectrum181,8929 - definition is_spectrum_of_nat_indexedspectrum.is_spectrum_of_nat_indexed230,10636 - protected definition Mkspectrum.Mk270,12731 - definition equiv_gluespectrum.equiv_glue209,9865 - mkspectrum.smap.mk279,13094 - mkgen_spectrum.mk193,9308 -structure is_equiv_glueis_spectrum.is_equiv_glue187,9094 - definition gluespectrum.glue207,9753 - definition sigma_charpointed.phomotopy.sigma_char49,1559 - structure sp_chain_complexspectrum.sp_chain_complex.rec386,18262 - structure smapspectrum.smap278,13041 - mkspectrum.shomotopy.mk318,15388 -structure gen_spectrumgen_spectrum192,9275 - definition psp_suspspectrum.psp_susp335,16065 -structure is_spectrumis_spectrum187,9094 - structure is_chain_complexspectrum.sp_chain_complex.is_chain_complex386,18262 -structure cases_ongen_prespectrum.cases_on181,8929 - definition sfiberspectrum.sfiber382,18050 - definition of_natspectrum.succ_str.of_nat244,11289 - definition pathover_eq_Fl'eq.pathover_eq_Fl'28,913 -structure rec_ongen_prespectrum.rec_on181,8929 - definition pconst_pcomposepointed.pconst_pcompose104,4907 -structure no_confusiongen_spectrum.no_confusion192,9275 - structure rec_onspectrum.smap.rec_on278,13041 - mkspectrum.sp_chain_complex.mk387,18308 - definition sp_cotensorspectrum.sp_cotensor366,17352 - definition pfiber_equiv_of_squarepointed.pfiber_equiv_of_square154,7944 - structure destructspectrum.smap.destruct278,13041 - definition loop_ppi_commutepointed.loop_ppi_commute163,8361 - definition sidspectrum.sid293,13688 - structure to_phomotopyspectrum.shomotopy.to_phomotopy317,15315 -structure to_is_spectrumgen_spectrum.to_is_spectrum192,9275 - definition psp_of_nat_indexedspectrum.psp_of_nat_indexed216,10207 - definition spispectrum.spi374,17699 - definition sigma_charpointed.pmap.sigma_char40,1292 - definition is_equiv_ppcompose_leftpointed.is_equiv_ppcompose_left85,3741 - -algebra/module.hlean,3083 -mkleft_module.mk22,563 -structure destructleft_module.destruct20,467 -structure cases_onvector_space.cases_on72,2518 - proposition smul_zerosmul_zero50,1651 -structure rec_onleft_module.rec_on20,467 -structure mul_smulleft_module.mul_smul20,467 - proposition neg_one_smulneg_one_smul57,1961 -structure has_scalarhas_scalar13,339 -structure smul_left_distribvector_space.smul_left_distrib72,2518 -structure add_zerovector_space.add_zero72,2518 -structure cases_onhas_scalar.cases_on13,339 - proposition one_smulone_smul44,1413 -structure zero_addleft_module.zero_add20,467 -structure rec_onhas_scalar.rec_on13,339 -structure smulvector_space.smul72,2518 -structure addvector_space.add72,2518 -structure smul_left_distribleft_module.smul_left_distrib20,467 -structure left_moduleleft_module.rec20,467 - proposition mul_smulmul_smul41,1310 - proposition smul_left_distribsmul_left_distrib35,1074 -structure destructhas_scalar.destruct13,339 -structure smulleft_module.smul20,467 -structure negleft_module.neg20,467 -structure vector_spacevector_space72,2518 - proposition smul_negsmul_neg60,2054 -structure one_smulleft_module.one_smul20,467 -structure is_set_carrierleft_module.is_set_carrier20,467 -structure left_moduleleft_module20,467 -structure no_confusionleft_module.no_confusion20,467 - proposition neg_smulneg_smul54,1811 -structure no_confusionhas_scalar.no_confusion13,339 -structure destructvector_space.destruct72,2518 -structure add_commvector_space.add_comm72,2518 -structure mkvector_space.mk72,2518 -structure zero_addvector_space.zero_add72,2518 -structure zerovector_space.zero72,2518 -structure add_zeroleft_module.add_zero20,467 -structure smul_right_distribvector_space.smul_right_distrib72,2518 - proposition zero_smulzero_smul46,1488 -structure vector_spacevector_space.rec72,2518 -structure negvector_space.neg72,2518 -structure has_scalarhas_scalar.rec13,339 -structure add_assocvector_space.add_assoc72,2518 -structure one_smulvector_space.one_smul72,2518 -structure add_assocleft_module.add_assoc20,467 - proposition sub_smul_right_distribsub_smul_right_distrib66,2336 -structure zeroleft_module.zero20,467 -structure smul_right_distribleft_module.smul_right_distrib20,467 - proposition smul_right_distribsmul_right_distrib38,1191 -structure add_commleft_module.add_comm20,467 -structure is_set_carriervector_space.is_set_carrier72,2518 -structure add_left_invvector_space.add_left_inv72,2518 -structure cases_onleft_module.cases_on20,467 -structure rec_onvector_space.rec_on72,2518 -structure no_confusionvector_space.no_confusion72,2518 - proposition smul_sub_left_distribsmul_sub_left_distrib63,2189 -structure smulhas_scalar.smul13,339 -structure to_add_comm_groupleft_module.to_add_comm_group20,467 -structure mul_smulvector_space.mul_smul72,2518 -structure add_left_invleft_module.add_left_inv20,467 -mkhas_scalar.mk14,374 -structure addleft_module.add20,467 -structure to_left_modulevector_space.to_left_module72,2518 -structure to_has_scalarleft_module.to_has_scalar20,467 diff --git a/algebra/subgroup.hlean b/algebra/subgroup.hlean index b2ae55b..5d514f0 100644 --- a/algebra/subgroup.hlean +++ b/algebra/subgroup.hlean @@ -123,11 +123,12 @@ namespace group (is_normal_subgroup : is_normal R) attribute subgroup_rel.R [coercion] - abbreviation subgroup_to_rel [unfold 2] := @subgroup_rel.R - abbreviation subgroup_has_one [unfold 2] := @subgroup_rel.Rone - abbreviation subgroup_respect_mul [unfold 2] := @subgroup_rel.Rmul - abbreviation subgroup_respect_inv [unfold 2] := @subgroup_rel.Rinv - abbreviation is_normal_subgroup [unfold 2] := @normal_subgroup_rel.is_normal_subgroup + abbreviation subgroup_to_rel [parsing_only] [unfold 2] := @subgroup_rel.R + abbreviation subgroup_has_one [parsing_only] [unfold 2] := @subgroup_rel.Rone + abbreviation subgroup_respect_mul [parsing_only] [unfold 2] := @subgroup_rel.Rmul + abbreviation subgroup_respect_inv [parsing_only] [unfold 2] := @subgroup_rel.Rinv + abbreviation is_normal_subgroup [parsing_only] [unfold 2] := + @normal_subgroup_rel.is_normal_subgroup variables {G G' : Group} (H : subgroup_rel G) (N : normal_subgroup_rel G) {g g' h h' k : G} {A B : CommGroup} diff --git a/homotopy/smash.hlean b/homotopy/smash.hlean index c7cc0e3..7d6e2fc 100644 --- a/homotopy/smash.hlean +++ b/homotopy/smash.hlean @@ -6,9 +6,9 @@ However, we define it (equivalently) as the pushout of the maps A + B → 2 and A + B → A × B. -/ -import homotopy.circle homotopy.join types.pointed ..move_to_lib +import homotopy.circle homotopy.join types.pointed homotopy.cofiber ..move_to_lib -open bool pointed eq equiv is_equiv sum bool prod unit circle +open bool pointed eq equiv is_equiv sum bool prod unit circle cofiber namespace smash @@ -181,6 +181,38 @@ namespace smash /- To prove: commutative, associative -/ + /- smash A B ≃ pcofiber (pprod_of_pwedge A B) -/ + + definition prod_of_pwedge [unfold 3] (v : pwedge A B) : A × B := + begin + induction v with a b , + { exact (a, pt) }, + { exact (pt, b) }, + { reflexivity } + end + + definition pprod_of_pwedge [constructor] : pwedge A B →* A ×* B := + begin + fconstructor, + { intro v, induction v with a b , + { exact (a, pt) }, + { exact (pt, b) }, + { reflexivity }}, + { reflexivity } + end + + attribute pcofiber [constructor] + definition pcofiber_of_smash (x : smash A B) : pcofiber (@pprod_of_pwedge A B) := + begin + induction x, + { exact pushout.inr (a, b) }, + { exact pushout.inl ⋆ }, + { exact pushout.inl ⋆ }, + { symmetry, }, + { } + end + + /- smash A S¹ = susp A -/ open susp diff --git a/move_to_lib.hlean b/move_to_lib.hlean index 4243431..6de864b 100644 --- a/move_to_lib.hlean +++ b/move_to_lib.hlean @@ -7,7 +7,7 @@ open eq nat int susp pointed pmap sigma is_equiv equiv fiber algebra trunc trunc attribute equiv.symm equiv.trans is_equiv.is_equiv_ap fiber.equiv_postcompose fiber.equiv_precompose pequiv.to_pmap pequiv._trans_of_to_pmap ghomotopy_group_succ_in - isomorphism_of_eq pmap_bool_equiv sphere_equiv_bool psphere_pequiv_pbool fiber_eq_equiv + isomorphism_of_eq pmap_bool_equiv sphere_equiv_bool psphere_pequiv_pbool fiber_eq_equiv int.equiv_succ [constructor] attribute is_equiv.eq_of_fn_eq_fn' [unfold 3] attribute isomorphism._trans_of_to_hom [unfold 3] @@ -25,6 +25,21 @@ open sigma namespace group open is_trunc + -- some extra instances for type class inference + definition is_homomorphism_comm_homomorphism [instance] {G G' : CommGroup} (φ : G →g G') + : @is_homomorphism G G' (@comm_group.to_group _ (CommGroup.struct G)) + (@comm_group.to_group _ (CommGroup.struct G')) φ := + homomorphism.struct φ + + definition is_homomorphism_comm_homomorphism1 [instance] {G G' : CommGroup} (φ : G →g G') + : @is_homomorphism G G' _ + (@comm_group.to_group _ (CommGroup.struct G')) φ := + homomorphism.struct φ + + definition is_homomorphism_comm_homomorphism2 [instance] {G G' : CommGroup} (φ : G →g G') + : @is_homomorphism G G' (@comm_group.to_group _ (CommGroup.struct G)) _ φ := + homomorphism.struct φ + theorem inv_eq_one {A : Type} [group A] {a : A} (H : a = 1) : a⁻¹ = 1 := iff.mpr (inv_eq_one_iff_eq_one a) H