reorganize some files in the library. In particular, split up spectrum
This commit is contained in:
parent
2745c17498
commit
6bbe5ef450
13 changed files with 715 additions and 678 deletions
|
@ -32,3 +32,5 @@ equiv.MK f
|
|||
this has the additional advantage that if f and/or g are defined using induction, they will only reduce if they are applied to arguments for which they actually reduce (assuming they have the correct [unfold n] flag.
|
||||
|
||||
- unfold [foo] also does various (sometimes unwanted) reductions (as if you called esimp)
|
||||
|
||||
- The Emacs flycheck mode has a hard time with nonrelative paths to files in the same directory. This means that for importing files from the Lean 2 HoTT library use absolute paths (e.g. `import algebra.group`) and for importing files in the Spectral repository use relative paths (e.g. for a file in the `homotopy` folder use `import ..algebra.subgroup`)
|
||||
|
|
|
@ -2,6 +2,7 @@ In this file I (Floris) will collect some lessons learned from building and work
|
|||
Some of these things still need to be changes, some of them are already changed, and some of them are not worth the effort to change.
|
||||
|
||||
- Spheres should be indexed by ℕ, it is not worth the effort to start counting at -1 (pointed spheres are much more useful anyway).
|
||||
- I think the type `trunc_index` / `ℕ₋₂` is superfluous and `ℤ` should be used instead (defined so that `is_trunc n A`and `trunc n A is` constant for `n ≤ -2`). This saves defining operations and proving properties on an additional type, and it is useful when defining truncations / truncatedness for spectra, which are naturally indexed by `ℤ`.
|
||||
- Don't have both susp and psusp. psusp should be the default (otherwise there is a distinction between iterate susp and iterate psusp)
|
||||
- Pointed maps should be special cases of dependent pointed maps. Pointed homotopies (between dependent pointed maps) should be special cases of dependent pointed maps, and pointed homotopies should be related themselves by pointed homotopies.
|
||||
- Type classes don't work well together with bundled structures and coercions in Lean (the instance is_contr_unit will not unify with (is_contr punit).
|
||||
|
|
|
@ -102,3 +102,4 @@ These projects are done
|
|||
- Installation instructions for Lean 2 can be found [here](https://github.com/leanprover/lean2).
|
||||
- Some notes on the Emacs mode can be found [here](https://github.com/leanprover/lean2/blob/master/src/emacs/README.md) (for example if some unicode characters don't show up, or increase the spacing between lines by a lot).
|
||||
- If you contribute, please use rebase instead of merge (e.g. `git pull -r`).
|
||||
- We try to separate the repository into the folders `algebra`, `homotopy`, `homology` and `cohomology`. Homotopy theotic properties of types which do not explicitly mention homotopy, homology or cohomology groups (such as `A ∧ B ≃* B ∧ A`) are part of `homotopy`.
|
|
@ -68,39 +68,6 @@ this⁻¹ᵛ*
|
|||
end pointed open pointed
|
||||
|
||||
namespace spectrum
|
||||
/- begin move -/
|
||||
definition is_strunc_strunc_pred (X : spectrum) (k : ℤ) : is_strunc k (strunc (k - 1) X) :=
|
||||
λn, @(is_trunc_of_le _ (maxm2_monotone (add_le_add_right (sub_one_le k) n))) !is_strunc_strunc
|
||||
|
||||
definition ptrunc_maxm2_pred {n m : ℤ} (A : Type*) (p : n - 1 = m) :
|
||||
ptrunc (maxm2 m) A ≃* ptrunc (trunc_index.pred (maxm2 n)) A :=
|
||||
begin
|
||||
cases n with n, cases n with n, apply pequiv_of_is_contr,
|
||||
induction p, apply is_trunc_trunc,
|
||||
apply is_contr_ptrunc_minus_one,
|
||||
exact ptrunc_change_index (ap maxm2 (p⁻¹ ⬝ !add_sub_cancel)) A,
|
||||
exact ptrunc_change_index (ap maxm2 p⁻¹) A
|
||||
end
|
||||
|
||||
definition ptrunc_maxm2_pred_nat {n : ℕ} {m l : ℤ} (A : Type*)
|
||||
(p : nat.succ n = l) (q : pred l = m) (r : maxm2 m = trunc_index.pred (maxm2 (nat.succ n))) :
|
||||
@ptrunc_maxm2_pred (nat.succ n) m A (ap pred p ⬝ q) ~* ptrunc_change_index r A :=
|
||||
begin
|
||||
have ap maxm2 ((ap pred p ⬝ q)⁻¹ ⬝ add_sub_cancel n 1) = r, from !is_set.elim,
|
||||
induction this, reflexivity
|
||||
end
|
||||
|
||||
definition EM_type_pequiv_EM (A : spectrum) (n k : ℤ) (l : ℕ) (p : n + k = l) :
|
||||
EM_type (A k) l ≃* EM (πₛ[n] A) l :=
|
||||
begin
|
||||
symmetry,
|
||||
cases l with l,
|
||||
{ exact shomotopy_group_pequiv_homotopy_group A p },
|
||||
{ cases l with l,
|
||||
{ apply EM1_pequiv_EM1, exact shomotopy_group_isomorphism_homotopy_group A p },
|
||||
{ apply EMadd1_pequiv_EMadd1 (l+1), exact shomotopy_group_isomorphism_homotopy_group A p }}
|
||||
end
|
||||
/- end move -/
|
||||
|
||||
definition postnikov_smap [constructor] (X : spectrum) (k : ℤ) :
|
||||
strunc k X →ₛ strunc (k - 1) X :=
|
||||
|
@ -123,7 +90,7 @@ definition pfiber_postnikov_map_pred' (A : spectrum) (n k l : ℤ) (p : n + k =
|
|||
begin
|
||||
cases l with l l,
|
||||
{ refine pfiber_postnikov_map_pred (A k) l ⬝e* _,
|
||||
exact EM_type_pequiv_EM A n k l p },
|
||||
exact EM_type_pequiv_EM A p },
|
||||
{ apply pequiv_of_is_contr, apply is_contr_pfiber_pid,
|
||||
apply is_contr_EM_spectrum_neg }
|
||||
end
|
||||
|
@ -265,6 +232,9 @@ section serre
|
|||
exact (sigma_pumap F (Y k))⁻¹ᵉ*
|
||||
end
|
||||
qed
|
||||
|
||||
|
||||
end serre
|
||||
|
||||
|
||||
end spectrum
|
||||
|
|
|
@ -6,7 +6,7 @@ Authors: Yuri Sulyma, Favonia, Floris van Doorn
|
|||
Reduced homology theories
|
||||
-/
|
||||
|
||||
import ..homotopy.spectrum ..homotopy.EM ..algebra.arrow_group ..algebra.direct_sum ..homotopy.fwedge ..homotopy.wedge ..choice ..homotopy.pushout ..move_to_lib
|
||||
import ..homotopy.smash_spectrum ..homotopy.wedge
|
||||
|
||||
open eq spectrum int pointed group algebra sphere nat equiv susp is_trunc
|
||||
function fwedge cofiber lift is_equiv choice algebra pi smash wedge
|
||||
|
|
|
@ -303,7 +303,13 @@ namespace EM
|
|||
EMadd1_pequiv_succ_natural f n !isomorphism.refl !isomorphism.refl (π→g[n+2] f)
|
||||
proof λa, idp qed
|
||||
|
||||
/- The Eilenberg-MacLane space K(G,n) with the same homotopy group as X on level n -/
|
||||
/- The Eilenberg-MacLane space K(G,n) with the same homotopy group as X on level n.
|
||||
On paper this is written K(πₙ(X), n). The problem is that for
|
||||
* n = 0 the expression π₀(X) is a pointed set, and K(X,0) needs X to be a pointed set
|
||||
* n = 1 the expression π₁(X) is a group, and K(G,1) needs G to be a group
|
||||
* n ≥ 2 the expression πₙ(X) is an abelian, and K(G,n) needs X to be an abelian group
|
||||
|
||||
-/
|
||||
definition EM_type (X : Type*) : ℕ → Type*
|
||||
| 0 := ptrunc 0 X
|
||||
| 1 := EM1 (π₁ X)
|
||||
|
|
41
homotopy/smash_spectrum.hlean
Normal file
41
homotopy/smash_spectrum.hlean
Normal file
|
@ -0,0 +1,41 @@
|
|||
import .spectrification .smash_adjoint
|
||||
|
||||
open pointed is_equiv equiv eq susp succ_str smash int
|
||||
namespace spectrum
|
||||
|
||||
/- Smash product of a prespectrum and a type -/
|
||||
|
||||
definition smash_prespectrum (X : Type*) (Y : prespectrum) : prespectrum :=
|
||||
prespectrum.mk (λ z, X ∧ Y z) begin
|
||||
intro n, refine loop_psusp_pintro (X ∧ Y n) (X ∧ Y (n + 1)) _,
|
||||
refine _ ∘* (smash_psusp X (Y n))⁻¹ᵉ*,
|
||||
refine smash_functor !pid _,
|
||||
refine psusp_pelim (Y n) (Y (n + 1)) _,
|
||||
exact !glue
|
||||
end
|
||||
|
||||
definition smash_prespectrum_fun {X X' : Type*} {Y Y' : prespectrum} (f : X →* X') (g : Y →ₛ Y') : smash_prespectrum X Y →ₛ smash_prespectrum X' Y' :=
|
||||
smap.mk (λn, smash_functor f (g n)) begin
|
||||
intro n,
|
||||
refine susp_to_loop_psquare _ _ _ _ _,
|
||||
refine pvconcat (psquare_transpose (phinverse (smash_psusp_natural f (g n)))) _,
|
||||
refine vconcat_phomotopy _ (smash_functor_split f (g (S n))),
|
||||
refine phomotopy_vconcat (smash_functor_split f (psusp_functor (g n))) _,
|
||||
refine phconcat _ _,
|
||||
let glue_adjoint := psusp_pelim (Y n) (Y (S n)) (glue Y n),
|
||||
exact pid X' ∧→ glue_adjoint,
|
||||
exact smash_functor_psquare (pvrefl f) (phrefl glue_adjoint),
|
||||
refine smash_functor_psquare (phrefl (pid X')) _,
|
||||
refine loop_to_susp_square _ _ _ _ _,
|
||||
exact smap.glue_square g n
|
||||
end
|
||||
|
||||
/- smash of a spectrum and a type -/
|
||||
definition smash_spectrum (X : Type*) (Y : spectrum) : spectrum :=
|
||||
spectrify (smash_prespectrum X Y)
|
||||
|
||||
definition smash_spectrum_fun {X X' : Type*} {Y Y' : spectrum} (f : X →* X') (g : Y →ₛ Y') : smash_spectrum X Y →ₛ smash_spectrum X' Y' :=
|
||||
spectrify_fun (smash_prespectrum_fun f g)
|
||||
|
||||
|
||||
end spectrum
|
250
homotopy/spectrification.hlean
Normal file
250
homotopy/spectrification.hlean
Normal file
|
@ -0,0 +1,250 @@
|
|||
import .spectrum ..colim
|
||||
|
||||
open eq pointed succ_str is_equiv equiv spectrum.smap seq_colim nat
|
||||
|
||||
namespace spectrum
|
||||
|
||||
/- Prespectrification -/
|
||||
definition is_sconnected {N : succ_str} {X Y : gen_prespectrum N} (h : X →ₛ Y) : Type :=
|
||||
Π (E : gen_spectrum N), is_equiv (λ g : Y →ₛ E, g ∘ₛ h)
|
||||
|
||||
-- We introduce a prespectrification operation X ↦ prespectrification X, with the goal of implementing spectrification as the sequential colimit of iterated applications of the prespectrification operation.
|
||||
definition prespectrification [constructor] {N : succ_str} (X : gen_prespectrum N) : gen_prespectrum N :=
|
||||
gen_prespectrum.mk (λ n, Ω (X (S n))) (λ n, Ω→ (glue X (S n)))
|
||||
|
||||
-- To define the unit η : X → prespectrification X, we need its underlying family of pointed maps
|
||||
definition to_prespectrification_pfun {N : succ_str} (X : gen_prespectrum N) (n : N) : X n →* prespectrification X n :=
|
||||
glue X n
|
||||
|
||||
-- And similarly we need the pointed homotopies witnessing that the squares commute
|
||||
definition to_prespectrification_psq {N : succ_str} (X : gen_prespectrum N) (n : N) :
|
||||
psquare (to_prespectrification_pfun X n) (Ω→ (to_prespectrification_pfun X (S n))) (glue X n)
|
||||
(glue (prespectrification X) n) :=
|
||||
psquare_of_phomotopy phomotopy.rfl
|
||||
|
||||
-- We bundle the previous two definitions into a morphism of prespectra
|
||||
definition to_prespectrification {N : succ_str} (X : gen_prespectrum N) : X →ₛ prespectrification X :=
|
||||
begin
|
||||
fapply smap.mk,
|
||||
exact to_prespectrification_pfun X,
|
||||
exact to_prespectrification_psq X,
|
||||
end
|
||||
|
||||
-- When E is a spectrum, then the map η : E → prespectrification E is an equivalence.
|
||||
definition is_sequiv_smap_to_prespectrification_of_is_spectrum {N : succ_str} (E : gen_prespectrum N) (H : is_spectrum E) : is_sequiv_smap (to_prespectrification E) :=
|
||||
begin
|
||||
intro n, induction E, induction H, exact is_equiv_glue n,
|
||||
end
|
||||
|
||||
-- If η : E → prespectrification E is an equivalence, then E is a spectrum.
|
||||
definition is_spectrum_of_is_sequiv_smap_to_prespectrification {N : succ_str} (E : gen_prespectrum N) (H : is_sequiv_smap (to_prespectrification E)) : is_spectrum E :=
|
||||
begin
|
||||
fapply is_spectrum.mk,
|
||||
exact H
|
||||
end
|
||||
|
||||
-- Our next goal is to show that if X is a prespectrum and E is a spectrum, then maps X →ₛ E extend uniquely along η : X → prespectrification X.
|
||||
|
||||
-- In the following we define the underlying family of pointed maps of such an extension
|
||||
definition is_sconnected_to_prespectrification_inv_pfun {N : succ_str} {X : gen_prespectrum N} {E : gen_spectrum N} : (X →ₛ E) → Π (n : N), prespectrification X n →* E n :=
|
||||
λ (f : X →ₛ E) n, (equiv_glue E n)⁻¹ᵉ* ∘* Ω→ (f (S n))
|
||||
|
||||
-- In the following we define the commuting squares of the extension
|
||||
definition is_sconnected_to_prespectrification_inv_psq {N : succ_str} {X : gen_prespectrum N} {E : gen_spectrum N} (f : X →ₛ E) (n : N) :
|
||||
psquare (is_sconnected_to_prespectrification_inv_pfun f n)
|
||||
(Ω→ (is_sconnected_to_prespectrification_inv_pfun f (S n)))
|
||||
(glue (prespectrification X) n)
|
||||
(glue (gen_spectrum.to_prespectrum E) n)
|
||||
:=
|
||||
begin
|
||||
fapply psquare_of_phomotopy,
|
||||
refine (passoc (glue (gen_spectrum.to_prespectrum E) n) (pequiv.to_pmap
|
||||
(equiv_glue (gen_spectrum.to_prespectrum E) n)⁻¹ᵉ*) (Ω→ (to_fun f (S n))))⁻¹* ⬝* _,
|
||||
refine pwhisker_right (Ω→ (to_fun f (S n))) (pright_inv (equiv_glue E n)) ⬝* _,
|
||||
refine _ ⬝* pwhisker_right (glue (prespectrification X) n) ((ap1_pcompose (pequiv.to_pmap (equiv_glue (gen_spectrum.to_prespectrum E) (S n))⁻¹ᵉ*) (Ω→ (to_fun f (S (S n)))))⁻¹*),
|
||||
refine pid_pcompose (Ω→ (f (S n))) ⬝* _,
|
||||
repeat exact sorry
|
||||
end
|
||||
|
||||
-- Now we bundle the definition into a map (X →ₛ E) → (prespectrification X →ₛ E)
|
||||
definition is_sconnected_to_prespectrification_inv {N : succ_str} (X : gen_prespectrum N) (E : gen_spectrum N)
|
||||
: (X →ₛ E) → (prespectrification X →ₛ E) :=
|
||||
begin
|
||||
intro f,
|
||||
fapply smap.mk,
|
||||
exact is_sconnected_to_prespectrification_inv_pfun f,
|
||||
exact is_sconnected_to_prespectrification_inv_psq f
|
||||
end
|
||||
|
||||
definition is_sconnected_to_prespectrification_isretr_pfun {N : succ_str} {X : gen_prespectrum N} {E : gen_spectrum N} (f : prespectrification X →ₛ E) (n : N) : to_fun (is_sconnected_to_prespectrification_inv X E (f ∘ₛ to_prespectrification X)) n ~* to_fun f n := begin exact sorry end
|
||||
|
||||
definition is_sconnected_to_prespectrification_isretr_psq {N : succ_str} {X : gen_prespectrum N} {E : gen_spectrum N} (f : prespectrification X →ₛ E) (n : N) :
|
||||
ptube_v (is_sconnected_to_prespectrification_isretr_pfun f n)
|
||||
(Ω⇒ (is_sconnected_to_prespectrification_isretr_pfun f (S n)))
|
||||
(glue_square (is_sconnected_to_prespectrification_inv X E (f ∘ₛ to_prespectrification X)) n)
|
||||
(glue_square f n)
|
||||
:=
|
||||
begin
|
||||
repeat exact sorry
|
||||
end
|
||||
|
||||
definition is_sconnected_to_prespectrification_isretr {N : succ_str} (X : gen_prespectrum N) (E : gen_spectrum N) (f : prespectrification X →ₛ E) : is_sconnected_to_prespectrification_inv X E (f ∘ₛ to_prespectrification X) = f :=
|
||||
begin
|
||||
fapply eq_of_shomotopy,
|
||||
fapply shomotopy.mk,
|
||||
exact is_sconnected_to_prespectrification_isretr_pfun f,
|
||||
exact is_sconnected_to_prespectrification_isretr_psq f,
|
||||
end
|
||||
|
||||
definition is_sconnected_to_prespectrification_issec_pfun {N : succ_str} {X : gen_prespectrum N} {E : gen_spectrum N} (g : X →ₛ E) (n : N) :
|
||||
to_fun (is_sconnected_to_prespectrification_inv X E g ∘ₛ to_prespectrification X) n ~* to_fun g n
|
||||
:=
|
||||
begin
|
||||
repeat exact sorry
|
||||
end
|
||||
|
||||
definition is_sconnected_to_prespectrification_issec_psq {N : succ_str} {X : gen_prespectrum N} {E : gen_spectrum N} (g : X →ₛ E) (n : N) :
|
||||
ptube_v (is_sconnected_to_prespectrification_issec_pfun g n)
|
||||
(Ω⇒ (is_sconnected_to_prespectrification_issec_pfun g (S n)))
|
||||
(glue_square (is_sconnected_to_prespectrification_inv X E g ∘ₛ to_prespectrification X) n)
|
||||
(glue_square g n)
|
||||
:=
|
||||
begin
|
||||
repeat exact sorry
|
||||
end
|
||||
|
||||
definition is_sconnected_to_prespectrification_issec {N : succ_str} (X : gen_prespectrum N) (E : gen_spectrum N) (g : X →ₛ E) :
|
||||
is_sconnected_to_prespectrification_inv X E g ∘ₛ to_prespectrification X = g :=
|
||||
begin
|
||||
fapply eq_of_shomotopy,
|
||||
fapply shomotopy.mk,
|
||||
exact is_sconnected_to_prespectrification_issec_pfun g,
|
||||
exact is_sconnected_to_prespectrification_issec_psq g,
|
||||
end
|
||||
|
||||
definition is_sconnected_to_prespectrify {N : succ_str} (X : gen_prespectrum N) :
|
||||
is_sconnected (to_prespectrification X) :=
|
||||
begin
|
||||
intro E,
|
||||
fapply adjointify,
|
||||
exact is_sconnected_to_prespectrification_inv X E,
|
||||
exact is_sconnected_to_prespectrification_issec X E,
|
||||
exact is_sconnected_to_prespectrification_isretr X E
|
||||
end
|
||||
|
||||
-- Conjecture
|
||||
definition is_spectrum_of_local (X : gen_prespectrum +ℕ) (Hyp : is_equiv (λ (f : prespectrification (psp_sphere) →ₛ X), f ∘ₛ to_prespectrification (psp_sphere))) : is_spectrum X :=
|
||||
begin
|
||||
fapply is_spectrum.mk,
|
||||
exact sorry
|
||||
end
|
||||
|
||||
/- Spectrification -/
|
||||
|
||||
open chain_complex
|
||||
definition spectrify_type_term {N : succ_str} (X : gen_prespectrum N) (n : N) (k : ℕ) : Type* :=
|
||||
Ω[k] (X (n +' k))
|
||||
|
||||
definition spectrify_type_fun' {N : succ_str} (X : gen_prespectrum N) (n : N) (k : ℕ) :
|
||||
Ω[k] (X n) →* Ω[k+1] (X (S n)) :=
|
||||
!loopn_succ_in⁻¹ᵉ* ∘* Ω→[k] (glue X n)
|
||||
|
||||
definition spectrify_type_fun {N : succ_str} (X : gen_prespectrum N) (n : N) (k : ℕ) :
|
||||
spectrify_type_term X n k →* spectrify_type_term X n (k+1) :=
|
||||
spectrify_type_fun' X (n +' k) k
|
||||
|
||||
definition spectrify_type_fun_zero {N : succ_str} (X : gen_prespectrum N) (n : N) :
|
||||
spectrify_type_fun X n 0 ~* glue X n :=
|
||||
!pid_pcompose
|
||||
|
||||
definition spectrify_type {N : succ_str} (X : gen_prespectrum N) (n : N) : Type* :=
|
||||
pseq_colim (spectrify_type_fun X n)
|
||||
|
||||
/-
|
||||
Let Y = spectify X ≡ colim_k Ω^k X (n + k). Then
|
||||
Ω Y (n+1) ≡ Ω colim_k Ω^k X ((n + 1) + k)
|
||||
... = colim_k Ω^{k+1} X ((n + 1) + k)
|
||||
... = colim_k Ω^{k+1} X (n + (k + 1))
|
||||
... = colim_k Ω^k X(n + k)
|
||||
... ≡ Y n
|
||||
-/
|
||||
|
||||
definition spectrify_type_fun'_succ {N : succ_str} (X : gen_prespectrum N) (n : N) (k : ℕ) :
|
||||
spectrify_type_fun' X n (succ k) ~* Ω→ (spectrify_type_fun' X n k) :=
|
||||
begin
|
||||
refine !ap1_pcompose⁻¹*
|
||||
end
|
||||
|
||||
definition spectrify_pequiv {N : succ_str} (X : gen_prespectrum N) (n : N) :
|
||||
spectrify_type X n ≃* Ω (spectrify_type X (S n)) :=
|
||||
begin
|
||||
refine !pshift_equiv ⬝e* _,
|
||||
transitivity pseq_colim (λk, spectrify_type_fun' X (S n +' k) (succ k)),
|
||||
fapply pseq_colim_pequiv,
|
||||
{ intro n, apply loopn_pequiv_loopn, apply pequiv_ap X, apply succ_str.add_succ },
|
||||
{ exact abstract begin intro k,
|
||||
refine !passoc⁻¹* ⬝* _, refine pwhisker_right _ (loopn_succ_in_inv_natural (succ k) _) ⬝* _,
|
||||
refine !passoc ⬝* _ ⬝* !passoc⁻¹*, apply pwhisker_left,
|
||||
refine !apn_pcompose⁻¹* ⬝* _ ⬝* !apn_pcompose, apply apn_phomotopy,
|
||||
exact !glue_ptransport⁻¹* end end },
|
||||
refine _ ⬝e* !pseq_colim_loop⁻¹ᵉ*,
|
||||
exact pseq_colim_equiv_constant (λn, !spectrify_type_fun'_succ),
|
||||
end
|
||||
|
||||
definition spectrify [constructor] {N : succ_str} (X : gen_prespectrum N) : gen_spectrum N :=
|
||||
spectrum.MK (spectrify_type X) (spectrify_pequiv X)
|
||||
|
||||
definition spectrify_map {N : succ_str} {X : gen_prespectrum N} : X →ₛ spectrify X :=
|
||||
begin
|
||||
fapply smap.mk,
|
||||
{ intro n, exact pinclusion _ 0 },
|
||||
{ intro n, apply phomotopy_of_psquare,
|
||||
refine !pid_pcompose⁻¹* ⬝ph* _,
|
||||
refine !passoc ⬝* pwhisker_left _ (pshift_equiv_pinclusion (spectrify_type_fun X n) 0) ⬝* _,
|
||||
refine !passoc⁻¹* ⬝* _,
|
||||
refine _ ◾* (spectrify_type_fun_zero X n ⬝* !pid_pcompose⁻¹*),
|
||||
refine !passoc ⬝* pwhisker_left _ !pseq_colim_pequiv_pinclusion ⬝* _,
|
||||
refine pwhisker_left _ (pwhisker_left _ (ap1_pid) ⬝* !pcompose_pid) ⬝* _,
|
||||
refine !passoc ⬝* pwhisker_left _ !seq_colim_equiv_constant_pinclusion ⬝* _,
|
||||
apply pinv_left_phomotopy_of_phomotopy,
|
||||
exact !pseq_colim_loop_pinclusion⁻¹*
|
||||
}
|
||||
end
|
||||
|
||||
definition spectrify.elim_n {N : succ_str} {X : gen_prespectrum N} {Y : gen_spectrum N}
|
||||
(f : X →ₛ Y) (n : N) : (spectrify X) n →* Y n :=
|
||||
begin
|
||||
fapply pseq_colim.elim,
|
||||
{ intro k, refine !equiv_gluen⁻¹ᵉ* ∘* apn k (f (n +' k)) },
|
||||
{ intro k, refine !passoc ⬝* pwhisker_right _ !equiv_gluen_inv_succ ⬝* _,
|
||||
refine !passoc ⬝* _, apply pwhisker_left,
|
||||
refine !passoc ⬝* _,
|
||||
refine pwhisker_left _ ((passoc _ _ (_ ∘* _))⁻¹*) ⬝* _,
|
||||
refine pwhisker_left _ !passoc⁻¹* ⬝* _,
|
||||
refine pwhisker_left _ (pwhisker_right _ (phomotopy_pinv_right_of_phomotopy (!loopn_succ_in_natural)⁻¹*)⁻¹*) ⬝* _,
|
||||
refine pwhisker_right _ !apn_pinv ⬝* _,
|
||||
refine (phomotopy_pinv_left_of_phomotopy _)⁻¹*,
|
||||
refine apn_psquare k _,
|
||||
refine psquare_of_phomotopy !smap.glue_square }
|
||||
end
|
||||
|
||||
definition spectrify.elim {N : succ_str} {X : gen_prespectrum N} {Y : gen_spectrum N}
|
||||
(f : X →ₛ Y) : spectrify X →ₛ Y :=
|
||||
begin
|
||||
fapply smap.mk,
|
||||
{ intro n, exact spectrify.elim_n f n },
|
||||
{ intro n, exact sorry }
|
||||
end
|
||||
|
||||
definition phomotopy_spectrify.elim {N : succ_str} {X : gen_prespectrum N} {Y : gen_spectrum N}
|
||||
(f : X →ₛ Y) (n : N) : spectrify.elim_n f n ∘* spectrify_map n ~* f n :=
|
||||
begin
|
||||
refine pseq_colim.elim_pinclusion _ _ 0 ⬝* _,
|
||||
exact !pid_pcompose
|
||||
end
|
||||
|
||||
definition spectrify_fun {N : succ_str} {X Y : gen_prespectrum N} (f : X →ₛ Y) : spectrify X →ₛ spectrify Y :=
|
||||
spectrify.elim ((@spectrify_map _ Y) ∘ₛ f)
|
||||
|
||||
|
||||
end spectrum
|
|
@ -5,10 +5,10 @@ Authors: Michael Shulman, Floris van Doorn, Egbert Rijke, Stefano Piceghello, Yu
|
|||
|
||||
-/
|
||||
|
||||
import homotopy.LES_of_homotopy_groups .splice ..colim types.pointed2 .EM ..pointed_pi .smash_adjoint ..algebra.seq_colim .fwedge .pointed_cubes
|
||||
import homotopy.LES_of_homotopy_groups ..algebra.splice ..algebra.seq_colim .EM .fwedge .pointed_cubes
|
||||
|
||||
open eq nat int susp pointed pmap sigma is_equiv equiv fiber algebra trunc trunc_index pi group
|
||||
seq_colim succ_str EM EM.ops function unit lift is_trunc
|
||||
succ_str EM EM.ops function unit lift is_trunc
|
||||
|
||||
/---------------------
|
||||
Basic definitions
|
||||
|
@ -302,11 +302,147 @@ namespace spectrum
|
|||
exact phhinverse ((shomotopy.glue_homotopy p) n)
|
||||
end
|
||||
|
||||
|
||||
/- Comparing the structure of shomotopy with a Σ-type -/
|
||||
definition shomotopy_sigma {N : succ_str} {X Y : gen_prespectrum N} (f g : X →ₛ Y) : Type :=
|
||||
Σ (phtpy : Π (n : N), f n ~* g n),
|
||||
Πn, ptube_v
|
||||
(phtpy n)
|
||||
(ap1_phomotopy (phtpy (S n)))
|
||||
(glue_square f n)
|
||||
(glue_square g n)
|
||||
|
||||
definition shomotopy_to_sigma [unfold 6] {N : succ_str} {X Y : gen_prespectrum N} {f g : X →ₛ Y} (H : f ~ₛ g) : shomotopy_sigma f g :=
|
||||
begin
|
||||
induction H with H Hsq,
|
||||
exact sigma.mk H Hsq,
|
||||
end
|
||||
|
||||
definition shomotopy_to_struct [unfold 6] {N : succ_str} {X Y : gen_prespectrum N} {f g : X →ₛ Y} (H : shomotopy_sigma f g) : f ~ₛ g :=
|
||||
begin
|
||||
induction H with H Hsq,
|
||||
exact shomotopy.mk H Hsq,
|
||||
end
|
||||
|
||||
definition shomotopy_to_sigma_isretr {N : succ_str} {X Y : gen_prespectrum N} {f g : X →ₛ Y} (H : shomotopy_sigma f g) :
|
||||
shomotopy_to_sigma (shomotopy_to_struct H) = H
|
||||
:=
|
||||
begin
|
||||
induction H with H Hsq, reflexivity
|
||||
end
|
||||
|
||||
definition shomotopy_to_sigma_issec {N : succ_str} {X Y : gen_prespectrum N} {f g : X →ₛ Y} (H : f ~ₛ g) :
|
||||
shomotopy_to_struct (shomotopy_to_sigma H) = H
|
||||
:=
|
||||
begin
|
||||
induction H, reflexivity
|
||||
end
|
||||
|
||||
definition shomotopy_sigma_equiv [constructor] {N : succ_str} {X Y : gen_prespectrum N} (f g : X →ₛ Y) :
|
||||
shomotopy_sigma f g ≃ (f ~ₛ g) :=
|
||||
begin
|
||||
fapply equiv.mk,
|
||||
exact shomotopy_to_struct,
|
||||
fapply adjointify,
|
||||
exact shomotopy_to_sigma,
|
||||
exact shomotopy_to_sigma_issec,
|
||||
exact shomotopy_to_sigma_isretr,
|
||||
end
|
||||
|
||||
/- equivalence of shomotopy and eq -/
|
||||
/-
|
||||
definition eq_of_shomotopy_pfun {N : succ_str} {X Y : gen_prespectrum N} {f g : X →ₛ Y} (H : f ~ₛ g) (n : N) : f n = g n :=
|
||||
begin
|
||||
fapply eq_of_fn_eq_fn (smap_sigma_equiv X Y),
|
||||
repeat exact sorry
|
||||
end-/
|
||||
|
||||
definition fam_phomotopy_of_eq
|
||||
{N : Type} {X Y: N → Type*} (f g : Π n, X n →* Y n) : (f = g) ≃ (Π n, f n ~* g n) :=
|
||||
(eq.eq_equiv_homotopy) ⬝e pi_equiv_pi_right (λ n, pmap_eq_equiv (f n) (g n))
|
||||
|
||||
/-
|
||||
definition ppi_homotopy_rec_on_eq [recursor]
|
||||
{k' : ppi_gen B x₀}
|
||||
{Q : (k ~~* k') → Type}
|
||||
(p : k ~~* k')
|
||||
(H : Π(q : k = k'), Q (ppi_homotopy_of_eq q))
|
||||
: Q p :=
|
||||
ppi_homotopy_of_eq_of_ppi_homotopy p ▸ H (eq_of_ppi_homotopy p)
|
||||
-/
|
||||
definition fam_phomotopy_rec_on_eq {N : Type} {X Y : N → Type*} (f g : Π n, X n →* Y n)
|
||||
{Q : (Π n, f n ~* g n) → Type}
|
||||
(p : Π n, f n ~* g n)
|
||||
(H : Π (q : f = g), Q (fam_phomotopy_of_eq f g q)) : Q p :=
|
||||
begin
|
||||
refine _ ▸ H ((fam_phomotopy_of_eq f g)⁻¹ᵉ p),
|
||||
have q : to_fun (fam_phomotopy_of_eq f g) (to_fun (fam_phomotopy_of_eq f g)⁻¹ᵉ p) = p,
|
||||
from right_inv (fam_phomotopy_of_eq f g) p,
|
||||
krewrite q
|
||||
end
|
||||
|
||||
/-
|
||||
definition ppi_homotopy_rec_on_idp [recursor]
|
||||
{Q : Π {k' : ppi_gen B x₀}, (k ~~* k') → Type}
|
||||
(q : Q (ppi_homotopy.refl k)) {k' : ppi_gen B x₀} (H : k ~~* k') : Q H :=
|
||||
begin
|
||||
induction H using ppi_homotopy_rec_on_eq with t,
|
||||
induction t, exact eq_ppi_homotopy_refl_ppi_homotopy_of_eq_refl k ▸ q,
|
||||
end
|
||||
-/
|
||||
|
||||
--set_option pp.coercions true
|
||||
|
||||
definition fam_phomotopy_rec_on_idp {N : Type} {X Y : N → Type*} (f : Π n, X n →* Y n)
|
||||
(Q : Π (g : Π n, X n →* Y n) (H : Π n, f n ~* g n), Type)
|
||||
(q : Q f (λ n, phomotopy.rfl))
|
||||
(g : Π n, X n →* Y n) (H : Π n, f n ~* g n) : Q g H :=
|
||||
begin
|
||||
fapply fam_phomotopy_rec_on_eq,
|
||||
refine λ(p : f = g), _, --ugly trick
|
||||
intro p, induction p,
|
||||
exact q,
|
||||
end
|
||||
|
||||
definition eq_of_shomotopy {N : succ_str} {X Y : gen_prespectrum N} {f g : X →ₛ Y} (H : f ~ₛ g) : f = g :=
|
||||
begin
|
||||
fapply eq_of_fn_eq_fn (smap_sigma_equiv X Y)⁻¹ᵉ,
|
||||
induction f with f fsq,
|
||||
induction g with g gsq,
|
||||
induction H with H Hsq,
|
||||
fapply sigma_eq,
|
||||
fapply eq_of_homotopy,
|
||||
intro n, fapply eq_of_phomotopy, exact H n,
|
||||
fapply pi_pathover_constant,
|
||||
intro n,
|
||||
esimp at *,
|
||||
revert g H gsq Hsq n,
|
||||
refine fam_phomotopy_rec_on_idp f _ _,
|
||||
intro gsq Hsq n,
|
||||
refine change_path _ _,
|
||||
-- have p : eq_of_homotopy (λ n, eq_of_phomotopy phomotopy.rfl) = refl f,
|
||||
reflexivity,
|
||||
refine (eq_of_homotopy_eta rfl)⁻¹ ⬝ _,
|
||||
fapply ap (eq_of_homotopy), fapply eq_of_homotopy, intro n, refine (eq_of_phomotopy_refl _)⁻¹,
|
||||
-- fapply eq_of_ppi_homotopy,
|
||||
fapply pathover_idp_of_eq,
|
||||
note Hsq' := ptube_v_eq_bot phomotopy.rfl (ap1_phomotopy_refl _) (fsq n) (gsq n) (Hsq n),
|
||||
unfold ptube_v at *,
|
||||
unfold phsquare at *,
|
||||
refine _ ⬝ Hsq'⁻¹ ⬝ _,
|
||||
refine (trans_refl (fsq n))⁻¹ ⬝ _,
|
||||
exact idp ◾** (pwhisker_right_refl _ _)⁻¹,
|
||||
refine _ ⬝ (refl_trans (gsq n)),
|
||||
refine _ ◾** idp,
|
||||
exact pwhisker_left_refl _ _,
|
||||
end
|
||||
|
||||
-- incoherent homotopies. this is a bit gross, but
|
||||
-- a) we don't need the higher coherences for most basic things
|
||||
-- (you need it for higher algebra, e.g. power operations)
|
||||
-- b) homotopies of maps between spectra are really hard
|
||||
|
||||
/- TODO: change this to sequences of pointed homotopies -/
|
||||
structure shomotopy_incoh {N : succ_str} {E F : gen_prespectrum N} (f g : E →ₛ F) :=
|
||||
(to_phomotopy : Πn, f n ~* g n)
|
||||
|
||||
|
@ -415,22 +551,32 @@ namespace spectrum
|
|||
fapply is_sequiv_of_smap_issec f H,
|
||||
end
|
||||
|
||||
------------------------------
|
||||
-- Suspension prespectra
|
||||
------------------------------
|
||||
/---------
|
||||
Fibers
|
||||
----------/
|
||||
|
||||
-- This should probably go in 'susp'
|
||||
definition psuspn : ℕ → Type* → Type*
|
||||
| psuspn 0 X := X
|
||||
| psuspn (succ n) X := psusp (psuspn n X)
|
||||
definition sfiber [constructor] {N : succ_str} {X Y : gen_spectrum N} (f : X →ₛ Y) :
|
||||
gen_spectrum N :=
|
||||
spectrum.MK (λn, pfiber (f n))
|
||||
(λn, (loop_pfiber (f (S n)))⁻¹ᵉ* ∘*ᵉ pfiber_pequiv_of_square _ _ (sglue_square f n))
|
||||
|
||||
-- Suspension prespectra are one that's naturally indexed on the natural numbers
|
||||
definition psp_susp (X : Type*) : gen_prespectrum +ℕ :=
|
||||
gen_prespectrum.mk (λn, psuspn n X) (λn, loop_psusp_unit (psuspn n X))
|
||||
/- the map from the fiber to the domain -/
|
||||
definition spoint {N : succ_str} {X Y : gen_spectrum N} (f : X →ₛ Y) : sfiber f →ₛ X :=
|
||||
smap.mk (λn, ppoint (f n))
|
||||
begin
|
||||
intro n,
|
||||
refine _ ⬝* !passoc,
|
||||
refine _ ⬝* pwhisker_right _ !ppoint_loop_pfiber_inv⁻¹*,
|
||||
rexact (pfiber_pequiv_of_square_ppoint (equiv_glue X n) (equiv_glue Y n) (sglue_square f n))⁻¹*
|
||||
end
|
||||
|
||||
-- The sphere prespectrum
|
||||
definition psp_sphere : gen_prespectrum +ℕ :=
|
||||
psp_susp bool.pbool
|
||||
definition scompose_spoint {N : succ_str} {X Y : gen_spectrum N} (f : X →ₛ Y)
|
||||
: f ∘ₛ spoint f ~ₛ !szero :=
|
||||
begin
|
||||
fapply shomotopy.mk,
|
||||
{ intro n, exact pcompose_ppoint (f n) },
|
||||
{ intro n, exact sorry }
|
||||
end
|
||||
|
||||
/---------------------
|
||||
Homotopy groups
|
||||
|
@ -465,239 +611,7 @@ namespace spectrum
|
|||
exact (shomotopy_incoh.to_phomotopy p) (2 - n)
|
||||
end
|
||||
|
||||
/- Comparing the structure of shomotopy with a Σ-type -/
|
||||
definition shomotopy_sigma {N : succ_str} {X Y : gen_prespectrum N} (f g : X →ₛ Y) : Type :=
|
||||
Σ (phtpy : Π (n : N), f n ~* g n),
|
||||
Πn, ptube_v
|
||||
(phtpy n)
|
||||
(ap1_phomotopy (phtpy (S n)))
|
||||
(glue_square f n)
|
||||
(glue_square g n)
|
||||
|
||||
definition shomotopy_to_sigma [unfold 6] {N : succ_str} {X Y : gen_prespectrum N} {f g : X →ₛ Y} (H : f ~ₛ g) : shomotopy_sigma f g :=
|
||||
begin
|
||||
induction H with H Hsq,
|
||||
exact sigma.mk H Hsq,
|
||||
end
|
||||
|
||||
definition shomotopy_to_struct [unfold 6] {N : succ_str} {X Y : gen_prespectrum N} {f g : X →ₛ Y} (H : shomotopy_sigma f g) : f ~ₛ g :=
|
||||
begin
|
||||
induction H with H Hsq,
|
||||
exact shomotopy.mk H Hsq,
|
||||
end
|
||||
|
||||
definition shomotopy_to_sigma_isretr {N : succ_str} {X Y : gen_prespectrum N} {f g : X →ₛ Y} (H : shomotopy_sigma f g) :
|
||||
shomotopy_to_sigma (shomotopy_to_struct H) = H
|
||||
:=
|
||||
begin
|
||||
induction H with H Hsq, reflexivity
|
||||
end
|
||||
|
||||
definition shomotopy_to_sigma_issec {N : succ_str} {X Y : gen_prespectrum N} {f g : X →ₛ Y} (H : f ~ₛ g) :
|
||||
shomotopy_to_struct (shomotopy_to_sigma H) = H
|
||||
:=
|
||||
begin
|
||||
induction H, reflexivity
|
||||
end
|
||||
|
||||
definition shomotopy_sigma_equiv [constructor] {N : succ_str} {X Y : gen_prespectrum N} (f g : X →ₛ Y) :
|
||||
shomotopy_sigma f g ≃ (f ~ₛ g) :=
|
||||
begin
|
||||
fapply equiv.mk,
|
||||
exact shomotopy_to_struct,
|
||||
fapply adjointify,
|
||||
exact shomotopy_to_sigma,
|
||||
exact shomotopy_to_sigma_issec,
|
||||
exact shomotopy_to_sigma_isretr,
|
||||
end
|
||||
|
||||
/- equivalence of shomotopy and eq -/
|
||||
/-
|
||||
definition eq_of_shomotopy_pfun {N : succ_str} {X Y : gen_prespectrum N} {f g : X →ₛ Y} (H : f ~ₛ g) (n : N) : f n = g n :=
|
||||
begin
|
||||
fapply eq_of_fn_eq_fn (smap_sigma_equiv X Y),
|
||||
repeat exact sorry
|
||||
end-/
|
||||
|
||||
definition fam_phomotopy_of_eq
|
||||
{N : Type} {X Y: N → Type*} (f g : Π n, X n →* Y n) : (f = g) ≃ (Π n, f n ~* g n) :=
|
||||
(eq.eq_equiv_homotopy) ⬝e pi_equiv_pi_right (λ n, pmap_eq_equiv (f n) (g n))
|
||||
|
||||
/-
|
||||
definition ppi_homotopy_rec_on_eq [recursor]
|
||||
{k' : ppi_gen B x₀}
|
||||
{Q : (k ~~* k') → Type}
|
||||
(p : k ~~* k')
|
||||
(H : Π(q : k = k'), Q (ppi_homotopy_of_eq q))
|
||||
: Q p :=
|
||||
ppi_homotopy_of_eq_of_ppi_homotopy p ▸ H (eq_of_ppi_homotopy p)
|
||||
-/
|
||||
definition fam_phomotopy_rec_on_eq {N : Type} {X Y : N → Type*} (f g : Π n, X n →* Y n)
|
||||
{Q : (Π n, f n ~* g n) → Type}
|
||||
(p : Π n, f n ~* g n)
|
||||
(H : Π (q : f = g), Q (fam_phomotopy_of_eq f g q)) : Q p :=
|
||||
begin
|
||||
refine _ ▸ H ((fam_phomotopy_of_eq f g)⁻¹ᵉ p),
|
||||
have q : to_fun (fam_phomotopy_of_eq f g) (to_fun (fam_phomotopy_of_eq f g)⁻¹ᵉ p) = p,
|
||||
from right_inv (fam_phomotopy_of_eq f g) p,
|
||||
krewrite q
|
||||
end
|
||||
|
||||
/-
|
||||
definition ppi_homotopy_rec_on_idp [recursor]
|
||||
{Q : Π {k' : ppi_gen B x₀}, (k ~~* k') → Type}
|
||||
(q : Q (ppi_homotopy.refl k)) {k' : ppi_gen B x₀} (H : k ~~* k') : Q H :=
|
||||
begin
|
||||
induction H using ppi_homotopy_rec_on_eq with t,
|
||||
induction t, exact eq_ppi_homotopy_refl_ppi_homotopy_of_eq_refl k ▸ q,
|
||||
end
|
||||
-/
|
||||
|
||||
set_option pp.coercions true
|
||||
|
||||
definition fam_phomotopy_rec_on_idp {N : Type} {X Y : N → Type*} (f : Π n, X n →* Y n)
|
||||
(Q : Π (g : Π n, X n →* Y n) (H : Π n, f n ~* g n), Type)
|
||||
(q : Q f (λ n, phomotopy.rfl))
|
||||
(g : Π n, X n →* Y n) (H : Π n, f n ~* g n) : Q g H :=
|
||||
begin
|
||||
fapply fam_phomotopy_rec_on_eq,
|
||||
refine λ(p : f = g), _, --ugly trick
|
||||
intro p, induction p,
|
||||
exact q,
|
||||
end
|
||||
|
||||
definition eq_of_shomotopy {N : succ_str} {X Y : gen_prespectrum N} {f g : X →ₛ Y} (H : f ~ₛ g) : f = g :=
|
||||
begin
|
||||
fapply eq_of_fn_eq_fn (smap_sigma_equiv X Y)⁻¹ᵉ,
|
||||
induction f with f fsq,
|
||||
induction g with g gsq,
|
||||
induction H with H Hsq,
|
||||
fapply sigma_eq,
|
||||
fapply eq_of_homotopy,
|
||||
intro n, fapply eq_of_phomotopy, exact H n,
|
||||
fapply pi_pathover_constant,
|
||||
intro n,
|
||||
esimp at *,
|
||||
revert g H gsq Hsq n,
|
||||
refine fam_phomotopy_rec_on_idp f _ _,
|
||||
intro gsq Hsq n,
|
||||
refine change_path _ _,
|
||||
-- have p : eq_of_homotopy (λ n, eq_of_phomotopy phomotopy.rfl) = refl f,
|
||||
reflexivity,
|
||||
refine (eq_of_homotopy_eta rfl)⁻¹ ⬝ _,
|
||||
fapply ap (eq_of_homotopy), fapply eq_of_homotopy, intro n, refine (eq_of_phomotopy_refl _)⁻¹,
|
||||
-- fapply eq_of_ppi_homotopy,
|
||||
fapply pathover_idp_of_eq,
|
||||
note Hsq' := ptube_v_eq_bot phomotopy.rfl (ap1_phomotopy_refl _) (fsq n) (gsq n) (Hsq n),
|
||||
unfold ptube_v at *,
|
||||
unfold phsquare at *,
|
||||
refine _ ⬝ Hsq'⁻¹ ⬝ _,
|
||||
refine (trans_refl (fsq n))⁻¹ ⬝ _,
|
||||
exact idp ◾** (pwhisker_right_refl _ _)⁻¹,
|
||||
refine _ ⬝ (refl_trans (gsq n)),
|
||||
refine _ ◾** idp,
|
||||
exact pwhisker_left_refl _ _,
|
||||
end
|
||||
|
||||
/- homotopy group of a prespectrum -/
|
||||
|
||||
definition pshomotopy_group_hom (n : ℤ) (E : prespectrum) (k : ℕ)
|
||||
: πag[k + 2] (E (-n - 2 + k)) →g πag[k + 3] (E (-n - 2 + (k + 1))) :=
|
||||
begin
|
||||
refine _ ∘g π→g[k+2] (glue E _),
|
||||
refine (ghomotopy_group_succ_in _ (k+1))⁻¹ᵍ ∘g _,
|
||||
refine homotopy_group_isomorphism_of_pequiv (k+1)
|
||||
(loop_pequiv_loop (pequiv_of_eq (ap E (add.assoc (-n - 2) k 1))))
|
||||
end
|
||||
|
||||
definition pshomotopy_group (n : ℤ) (E : prespectrum) : AbGroup :=
|
||||
group.seq_colim (λ(k : ℕ), πag[k+2] (E (-n - 2 + k))) (pshomotopy_group_hom n E)
|
||||
|
||||
notation `πₚₛ[`:95 n:0 `]`:0 := pshomotopy_group n
|
||||
|
||||
definition pshomotopy_group_fun (n : ℤ) {E F : prespectrum} (f : E →ₛ F) :
|
||||
πₚₛ[n] E →g πₚₛ[n] F :=
|
||||
group.seq_colim_functor (λk, π→g[k+2] (f (-n - 2 +[ℤ] k)))
|
||||
begin
|
||||
intro k,
|
||||
note sq1 := homotopy_group_homomorphism_psquare (k+2) (ptranspose (smap.glue_square f (-n - 2 +[ℤ] k))),
|
||||
note sq2 := homotopy_group_functor_hsquare (k+2) (ap1_psquare (ptransport_natural E F f (add.assoc (-n - 2) k 1))),
|
||||
note sq3 := (homotopy_group_succ_in_natural (k+2) (f (-n - 2 +[ℤ] (k+1))))⁻¹ʰᵗʸʰ,
|
||||
note sq4 := hsquare_of_psquare sq2,
|
||||
note rect := sq1 ⬝htyh sq4 ⬝htyh sq3,
|
||||
exact sorry --sq1 ⬝htyh sq4 ⬝htyh sq3,
|
||||
end
|
||||
|
||||
notation `πₚₛ→[`:95 n:0 `]`:0 := pshomotopy_group_fun n
|
||||
|
||||
/-------------------------------
|
||||
Cotensor of spectra by types
|
||||
-------------------------------/
|
||||
|
||||
-- Makes sense for any indexing succ_str. Could be done for
|
||||
-- prespectra too, but as with truncation, why bother?
|
||||
|
||||
definition sp_cotensor [constructor] {N : succ_str} (A : Type*) (B : gen_spectrum N) :
|
||||
gen_spectrum N :=
|
||||
spectrum.MK (λn, ppmap A (B n))
|
||||
(λn, (loop_ppmap_commute A (B (S n)))⁻¹ᵉ* ∘*ᵉ (pequiv_ppcompose_left (equiv_glue B n)))
|
||||
|
||||
/- unpointed cotensor -/
|
||||
definition sp_ucotensor [constructor] {N : succ_str} (A : Type) (B : gen_spectrum N) :
|
||||
gen_spectrum N :=
|
||||
spectrum.MK (λn, A →ᵘ* B n)
|
||||
(λn, pumap_pequiv_right A (equiv_glue B n) ⬝e* (loop_pumap A (B (S n)))⁻¹ᵉ*)
|
||||
|
||||
----------------------------------------
|
||||
-- Sections of parametrized spectra
|
||||
----------------------------------------
|
||||
|
||||
definition spi [constructor] {N : succ_str} (A : Type*) (E : A → gen_spectrum N) :
|
||||
gen_spectrum N :=
|
||||
spectrum.MK (λn, Π*a, E a n)
|
||||
(λn, !loop_pppi_pequiv⁻¹ᵉ* ∘*ᵉ ppi_pequiv_right (λa, equiv_glue (E a) n))
|
||||
|
||||
definition spi_compose_left [constructor] {N : succ_str} {A : Type*} {E F : A -> gen_spectrum N}
|
||||
(f : Πa, E a →ₛ F a) : spi A E →ₛ spi A F :=
|
||||
smap.mk (λn, ppi_compose_left (λa, f a n))
|
||||
begin
|
||||
intro n,
|
||||
exact psquare_ppi_compose_left (λa, (glue_square (f a) n)) ⬝v* !loop_pppi_pequiv_natural⁻¹ᵛ*
|
||||
end
|
||||
|
||||
-- unpointed spi
|
||||
definition supi [constructor] {N : succ_str} (A : Type) (E : A → gen_spectrum N) :
|
||||
gen_spectrum N :=
|
||||
spectrum.MK (λn, Πᵘ*a, E a n)
|
||||
(λn, pupi_pequiv_right (λa, equiv_glue (E a) n) ⬝e* (loop_pupi (λa, E a (S n)))⁻¹ᵉ*)
|
||||
|
||||
/-----------------------------------------
|
||||
Fibers and long exact sequences
|
||||
-----------------------------------------/
|
||||
|
||||
definition sfiber [constructor] {N : succ_str} {X Y : gen_spectrum N} (f : X →ₛ Y) :
|
||||
gen_spectrum N :=
|
||||
spectrum.MK (λn, pfiber (f n))
|
||||
(λn, (loop_pfiber (f (S n)))⁻¹ᵉ* ∘*ᵉ pfiber_pequiv_of_square _ _ (sglue_square f n))
|
||||
|
||||
/- the map from the fiber to the domain -/
|
||||
definition spoint {N : succ_str} {X Y : gen_spectrum N} (f : X →ₛ Y) : sfiber f →ₛ X :=
|
||||
smap.mk (λn, ppoint (f n))
|
||||
begin
|
||||
intro n,
|
||||
refine _ ⬝* !passoc,
|
||||
refine _ ⬝* pwhisker_right _ !ppoint_loop_pfiber_inv⁻¹*,
|
||||
rexact (pfiber_pequiv_of_square_ppoint (equiv_glue X n) (equiv_glue Y n) (sglue_square f n))⁻¹*
|
||||
end
|
||||
|
||||
definition scompose_spoint {N : succ_str} {X Y : gen_spectrum N} (f : X →ₛ Y)
|
||||
: f ∘ₛ spoint f ~ₛ !szero :=
|
||||
begin
|
||||
fapply shomotopy.mk,
|
||||
{ intro n, exact pcompose_ppoint (f n) },
|
||||
{ intro n, exact sorry }
|
||||
end
|
||||
|
||||
/- properties about homotopy groups -/
|
||||
definition equiv_glue_neg (X : spectrum) (n : ℤ) : X (2 - succ n) ≃* Ω (X (2 - n)) :=
|
||||
have H : succ (2 - succ n) = 2 - n, from ap succ !sub_sub⁻¹ ⬝ sub_add_cancel (2-n) 1,
|
||||
equiv_glue X (2 - succ n) ⬝e* loop_pequiv_loop (pequiv_of_eq (ap X H))
|
||||
|
@ -770,7 +684,8 @@ set_option pp.coercions true
|
|||
{ exact pequiv_of_isomorphism (shomotopy_group_isomorphism_homotopy_group E p) }
|
||||
end
|
||||
|
||||
section
|
||||
/- the long exact sequence of homotopy groups for spectra -/
|
||||
section LES
|
||||
open chain_complex prod fin group
|
||||
|
||||
universe variable u
|
||||
|
@ -823,8 +738,42 @@ set_option pp.coercions true
|
|||
πg_glue Y n ∘g (by reflexivity) qed
|
||||
| (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
|
||||
--(homomorphism_LES_of_homotopy_groups_fun (f (2 - n)) (1, 2) ∘g πg_glue Y n)
|
||||
end LES
|
||||
|
||||
/- homotopy group of a prespectrum -/
|
||||
|
||||
definition pshomotopy_group_hom (n : ℤ) (E : prespectrum) (k : ℕ)
|
||||
: πag[k + 2] (E (-n - 2 + k)) →g πag[k + 3] (E (-n - 2 + (k + 1))) :=
|
||||
begin
|
||||
refine _ ∘g π→g[k+2] (glue E _),
|
||||
refine (ghomotopy_group_succ_in _ (k+1))⁻¹ᵍ ∘g _,
|
||||
refine homotopy_group_isomorphism_of_pequiv (k+1)
|
||||
(loop_pequiv_loop (pequiv_of_eq (ap E (add.assoc (-n - 2) k 1))))
|
||||
end
|
||||
|
||||
definition pshomotopy_group (n : ℤ) (E : prespectrum) : AbGroup :=
|
||||
group.seq_colim (λ(k : ℕ), πag[k+2] (E (-n - 2 + k))) (pshomotopy_group_hom n E)
|
||||
|
||||
notation `πₚₛ[`:95 n:0 `]`:0 := pshomotopy_group n
|
||||
|
||||
definition pshomotopy_group_fun (n : ℤ) {E F : prespectrum} (f : E →ₛ F) :
|
||||
πₚₛ[n] E →g πₚₛ[n] F :=
|
||||
group.seq_colim_functor (λk, π→g[k+2] (f (-n - 2 +[ℤ] k)))
|
||||
begin
|
||||
intro k,
|
||||
note sq1 := homotopy_group_homomorphism_psquare (k+2) (ptranspose (smap.glue_square f (-n - 2 +[ℤ] k))),
|
||||
note sq2 := homotopy_group_functor_hsquare (k+2) (ap1_psquare (ptransport_natural E F f (add.assoc (-n - 2) k 1))),
|
||||
note sq3 := (homotopy_group_succ_in_natural (k+2) (f (-n - 2 +[ℤ] (k+1))))⁻¹ʰᵗʸʰ,
|
||||
note sq4 := hsquare_of_psquare sq2,
|
||||
note rect := sq1 ⬝htyh sq4 ⬝htyh sq3,
|
||||
exact sorry --sq1 ⬝htyh sq4 ⬝htyh sq3,
|
||||
end
|
||||
|
||||
notation `πₚₛ→[`:95 n:0 `]`:0 := pshomotopy_group_fun n
|
||||
|
||||
|
||||
/- a chain complex of spectra (not yet used anywhere) -/
|
||||
|
||||
structure sp_chain_complex (N : succ_str) : Type :=
|
||||
(car : N → spectrum)
|
||||
(fn : Π(n : N), car (S n) →ₛ car n)
|
||||
|
@ -839,256 +788,69 @@ set_option pp.coercions true
|
|||
:= sp_chain_complex.is_chain_complex X n
|
||||
end
|
||||
|
||||
|
||||
------------------------------
|
||||
-- Suspension prespectra
|
||||
------------------------------
|
||||
|
||||
-- Suspension prespectra are one that's naturally indexed on the natural numbers
|
||||
definition psp_susp (X : Type*) : gen_prespectrum +ℕ :=
|
||||
gen_prespectrum.mk (λn, psuspn n X) (λn, loop_psusp_unit (psuspn n X))
|
||||
|
||||
-- The sphere prespectrum
|
||||
definition psp_sphere : gen_prespectrum +ℕ :=
|
||||
psp_susp bool.pbool
|
||||
|
||||
|
||||
/-------------------------------
|
||||
Cotensor of spectra by types
|
||||
-------------------------------/
|
||||
|
||||
-- Makes sense for any indexing succ_str. Could be done for
|
||||
-- prespectra too, but as with truncation, why bother?
|
||||
|
||||
definition sp_cotensor [constructor] {N : succ_str} (A : Type*) (B : gen_spectrum N) :
|
||||
gen_spectrum N :=
|
||||
spectrum.MK (λn, ppmap A (B n))
|
||||
(λn, (loop_ppmap_commute A (B (S n)))⁻¹ᵉ* ∘*ᵉ (pequiv_ppcompose_left (equiv_glue B n)))
|
||||
|
||||
/- unpointed cotensor -/
|
||||
definition sp_ucotensor [constructor] {N : succ_str} (A : Type) (B : gen_spectrum N) :
|
||||
gen_spectrum N :=
|
||||
spectrum.MK (λn, A →ᵘ* B n)
|
||||
(λn, pumap_pequiv_right A (equiv_glue B n) ⬝e* (loop_pumap A (B (S n)))⁻¹ᵉ*)
|
||||
|
||||
----------------------------------------
|
||||
-- Sections of parametrized spectra
|
||||
----------------------------------------
|
||||
|
||||
definition spi [constructor] {N : succ_str} (A : Type*) (E : A → gen_spectrum N) :
|
||||
gen_spectrum N :=
|
||||
spectrum.MK (λn, Π*a, E a n)
|
||||
(λn, !loop_pppi_pequiv⁻¹ᵉ* ∘*ᵉ ppi_pequiv_right (λa, equiv_glue (E a) n))
|
||||
|
||||
definition spi_compose_left [constructor] {N : succ_str} {A : Type*} {E F : A -> gen_spectrum N}
|
||||
(f : Πa, E a →ₛ F a) : spi A E →ₛ spi A F :=
|
||||
smap.mk (λn, ppi_compose_left (λa, f a n))
|
||||
begin
|
||||
intro n,
|
||||
exact psquare_ppi_compose_left (λa, (glue_square (f a) n)) ⬝v* !loop_pppi_pequiv_natural⁻¹ᵛ*
|
||||
end
|
||||
|
||||
-- unpointed spi
|
||||
definition supi [constructor] {N : succ_str} (A : Type) (E : A → gen_spectrum N) :
|
||||
gen_spectrum N :=
|
||||
spectrum.MK (λn, Πᵘ*a, E a n)
|
||||
(λn, pupi_pequiv_right (λa, equiv_glue (E a) n) ⬝e* (loop_pupi (λa, E a (S n)))⁻¹ᵉ*)
|
||||
|
||||
/- Mapping spectra -/
|
||||
-- note: see also cotensor above
|
||||
|
||||
/- Prespectrification -/
|
||||
definition is_sconnected {N : succ_str} {X Y : gen_prespectrum N} (h : X →ₛ Y) : Type :=
|
||||
Π (E : gen_spectrum N), is_equiv (λ g : Y →ₛ E, g ∘ₛ h)
|
||||
|
||||
-- We introduce a prespectrification operation X ↦ prespectrification X, with the goal of implementing spectrification as the sequential colimit of iterated applications of the prespectrification operation.
|
||||
definition prespectrification [constructor] {N : succ_str} (X : gen_prespectrum N) : gen_prespectrum N :=
|
||||
gen_prespectrum.mk (λ n, Ω (X (S n))) (λ n, Ω→ (glue X (S n)))
|
||||
|
||||
-- To define the unit η : X → prespectrification X, we need its underlying family of pointed maps
|
||||
definition to_prespectrification_pfun {N : succ_str} (X : gen_prespectrum N) (n : N) : X n →* prespectrification X n :=
|
||||
glue X n
|
||||
|
||||
-- And similarly we need the pointed homotopies witnessing that the squares commute
|
||||
definition to_prespectrification_psq {N : succ_str} (X : gen_prespectrum N) (n : N) :
|
||||
psquare (to_prespectrification_pfun X n) (Ω→ (to_prespectrification_pfun X (S n))) (glue X n)
|
||||
(glue (prespectrification X) n) :=
|
||||
psquare_of_phomotopy phomotopy.rfl
|
||||
|
||||
-- We bundle the previous two definitions into a morphism of prespectra
|
||||
definition to_prespectrification {N : succ_str} (X : gen_prespectrum N) : X →ₛ prespectrification X :=
|
||||
begin
|
||||
fapply smap.mk,
|
||||
exact to_prespectrification_pfun X,
|
||||
exact to_prespectrification_psq X,
|
||||
end
|
||||
|
||||
-- When E is a spectrum, then the map η : E → prespectrification E is an equivalence.
|
||||
definition is_sequiv_smap_to_prespectrification_of_is_spectrum {N : succ_str} (E : gen_prespectrum N) (H : is_spectrum E) : is_sequiv_smap (to_prespectrification E) :=
|
||||
begin
|
||||
intro n, induction E, induction H, exact is_equiv_glue n,
|
||||
end
|
||||
|
||||
-- If η : E → prespectrification E is an equivalence, then E is a spectrum.
|
||||
definition is_spectrum_of_is_sequiv_smap_to_prespectrification {N : succ_str} (E : gen_prespectrum N) (H : is_sequiv_smap (to_prespectrification E)) : is_spectrum E :=
|
||||
begin
|
||||
fapply is_spectrum.mk,
|
||||
exact H
|
||||
end
|
||||
|
||||
-- Our next goal is to show that if X is a prespectrum and E is a spectrum, then maps X →ₛ E extend uniquely along η : X → prespectrification X.
|
||||
|
||||
-- In the following we define the underlying family of pointed maps of such an extension
|
||||
definition is_sconnected_to_prespectrification_inv_pfun {N : succ_str} {X : gen_prespectrum N} {E : gen_spectrum N} : (X →ₛ E) → Π (n : N), prespectrification X n →* E n :=
|
||||
λ (f : X →ₛ E) n, (equiv_glue E n)⁻¹ᵉ* ∘* Ω→ (f (S n))
|
||||
|
||||
-- In the following we define the commuting squares of the extension
|
||||
definition is_sconnected_to_prespectrification_inv_psq {N : succ_str} {X : gen_prespectrum N} {E : gen_spectrum N} (f : X →ₛ E) (n : N) :
|
||||
psquare (is_sconnected_to_prespectrification_inv_pfun f n)
|
||||
(Ω→ (is_sconnected_to_prespectrification_inv_pfun f (S n)))
|
||||
(glue (prespectrification X) n)
|
||||
(glue (gen_spectrum.to_prespectrum E) n)
|
||||
:=
|
||||
begin
|
||||
fapply psquare_of_phomotopy,
|
||||
refine (passoc (glue (gen_spectrum.to_prespectrum E) n) (pequiv.to_pmap
|
||||
(equiv_glue (gen_spectrum.to_prespectrum E) n)⁻¹ᵉ*) (Ω→ (to_fun f (S n))))⁻¹* ⬝* _,
|
||||
refine pwhisker_right (Ω→ (to_fun f (S n))) (pright_inv (equiv_glue E n)) ⬝* _,
|
||||
refine _ ⬝* pwhisker_right (glue (prespectrification X) n) ((ap1_pcompose (pequiv.to_pmap (equiv_glue (gen_spectrum.to_prespectrum E) (S n))⁻¹ᵉ*) (Ω→ (to_fun f (S (S n)))))⁻¹*),
|
||||
refine pid_pcompose (Ω→ (f (S n))) ⬝* _,
|
||||
repeat exact sorry
|
||||
end
|
||||
|
||||
-- Now we bundle the definition into a map (X →ₛ E) → (prespectrification X →ₛ E)
|
||||
definition is_sconnected_to_prespectrification_inv {N : succ_str} (X : gen_prespectrum N) (E : gen_spectrum N)
|
||||
: (X →ₛ E) → (prespectrification X →ₛ E) :=
|
||||
begin
|
||||
intro f,
|
||||
fapply smap.mk,
|
||||
exact is_sconnected_to_prespectrification_inv_pfun f,
|
||||
exact is_sconnected_to_prespectrification_inv_psq f
|
||||
end
|
||||
|
||||
definition is_sconnected_to_prespectrification_isretr_pfun {N : succ_str} {X : gen_prespectrum N} {E : gen_spectrum N} (f : prespectrification X →ₛ E) (n : N) : to_fun (is_sconnected_to_prespectrification_inv X E (f ∘ₛ to_prespectrification X)) n ~* to_fun f n := begin exact sorry end
|
||||
|
||||
definition is_sconnected_to_prespectrification_isretr_psq {N : succ_str} {X : gen_prespectrum N} {E : gen_spectrum N} (f : prespectrification X →ₛ E) (n : N) :
|
||||
ptube_v (is_sconnected_to_prespectrification_isretr_pfun f n)
|
||||
(Ω⇒ (is_sconnected_to_prespectrification_isretr_pfun f (S n)))
|
||||
(glue_square (is_sconnected_to_prespectrification_inv X E (f ∘ₛ to_prespectrification X)) n)
|
||||
(glue_square f n)
|
||||
:=
|
||||
begin
|
||||
repeat exact sorry
|
||||
end
|
||||
|
||||
definition is_sconnected_to_prespectrification_isretr {N : succ_str} (X : gen_prespectrum N) (E : gen_spectrum N) (f : prespectrification X →ₛ E) : is_sconnected_to_prespectrification_inv X E (f ∘ₛ to_prespectrification X) = f :=
|
||||
begin
|
||||
fapply eq_of_shomotopy,
|
||||
fapply shomotopy.mk,
|
||||
exact is_sconnected_to_prespectrification_isretr_pfun f,
|
||||
exact is_sconnected_to_prespectrification_isretr_psq f,
|
||||
end
|
||||
|
||||
definition is_sconnected_to_prespectrification_issec_pfun {N : succ_str} {X : gen_prespectrum N} {E : gen_spectrum N} (g : X →ₛ E) (n : N) :
|
||||
to_fun (is_sconnected_to_prespectrification_inv X E g ∘ₛ to_prespectrification X) n ~* to_fun g n
|
||||
:=
|
||||
begin
|
||||
repeat exact sorry
|
||||
end
|
||||
|
||||
definition is_sconnected_to_prespectrification_issec_psq {N : succ_str} {X : gen_prespectrum N} {E : gen_spectrum N} (g : X →ₛ E) (n : N) :
|
||||
ptube_v (is_sconnected_to_prespectrification_issec_pfun g n)
|
||||
(Ω⇒ (is_sconnected_to_prespectrification_issec_pfun g (S n)))
|
||||
(glue_square (is_sconnected_to_prespectrification_inv X E g ∘ₛ to_prespectrification X) n)
|
||||
(glue_square g n)
|
||||
:=
|
||||
begin
|
||||
repeat exact sorry
|
||||
end
|
||||
|
||||
definition is_sconnected_to_prespectrification_issec {N : succ_str} (X : gen_prespectrum N) (E : gen_spectrum N) (g : X →ₛ E) :
|
||||
is_sconnected_to_prespectrification_inv X E g ∘ₛ to_prespectrification X = g :=
|
||||
begin
|
||||
fapply eq_of_shomotopy,
|
||||
fapply shomotopy.mk,
|
||||
exact is_sconnected_to_prespectrification_issec_pfun g,
|
||||
exact is_sconnected_to_prespectrification_issec_psq g,
|
||||
end
|
||||
|
||||
definition is_sconnected_to_prespectrify {N : succ_str} (X : gen_prespectrum N) :
|
||||
is_sconnected (to_prespectrification X) :=
|
||||
begin
|
||||
intro E,
|
||||
fapply adjointify,
|
||||
exact is_sconnected_to_prespectrification_inv X E,
|
||||
exact is_sconnected_to_prespectrification_issec X E,
|
||||
exact is_sconnected_to_prespectrification_isretr X E
|
||||
end
|
||||
|
||||
-- Conjecture
|
||||
definition is_spectrum_of_local (X : gen_prespectrum +ℕ) (Hyp : is_equiv (λ (f : prespectrification (psp_sphere) →ₛ X), f ∘ₛ to_prespectrification (psp_sphere))) : is_spectrum X :=
|
||||
begin
|
||||
fapply is_spectrum.mk,
|
||||
exact sorry
|
||||
end
|
||||
|
||||
/- Spectrification -/
|
||||
|
||||
open chain_complex
|
||||
definition spectrify_type_term {N : succ_str} (X : gen_prespectrum N) (n : N) (k : ℕ) : Type* :=
|
||||
Ω[k] (X (n +' k))
|
||||
|
||||
definition spectrify_type_fun' {N : succ_str} (X : gen_prespectrum N) (n : N) (k : ℕ) :
|
||||
Ω[k] (X n) →* Ω[k+1] (X (S n)) :=
|
||||
!loopn_succ_in⁻¹ᵉ* ∘* Ω→[k] (glue X n)
|
||||
|
||||
definition spectrify_type_fun {N : succ_str} (X : gen_prespectrum N) (n : N) (k : ℕ) :
|
||||
spectrify_type_term X n k →* spectrify_type_term X n (k+1) :=
|
||||
spectrify_type_fun' X (n +' k) k
|
||||
|
||||
definition spectrify_type_fun_zero {N : succ_str} (X : gen_prespectrum N) (n : N) :
|
||||
spectrify_type_fun X n 0 ~* glue X n :=
|
||||
!pid_pcompose
|
||||
|
||||
definition spectrify_type {N : succ_str} (X : gen_prespectrum N) (n : N) : Type* :=
|
||||
pseq_colim (spectrify_type_fun X n)
|
||||
|
||||
/-
|
||||
Let Y = spectify X ≡ colim_k Ω^k X (n + k). Then
|
||||
Ω Y (n+1) ≡ Ω colim_k Ω^k X ((n + 1) + k)
|
||||
... = colim_k Ω^{k+1} X ((n + 1) + k)
|
||||
... = colim_k Ω^{k+1} X (n + (k + 1))
|
||||
... = colim_k Ω^k X(n + k)
|
||||
... ≡ Y n
|
||||
-/
|
||||
|
||||
definition spectrify_type_fun'_succ {N : succ_str} (X : gen_prespectrum N) (n : N) (k : ℕ) :
|
||||
spectrify_type_fun' X n (succ k) ~* Ω→ (spectrify_type_fun' X n k) :=
|
||||
begin
|
||||
refine !ap1_pcompose⁻¹*
|
||||
end
|
||||
|
||||
definition spectrify_pequiv {N : succ_str} (X : gen_prespectrum N) (n : N) :
|
||||
spectrify_type X n ≃* Ω (spectrify_type X (S n)) :=
|
||||
begin
|
||||
refine !pshift_equiv ⬝e* _,
|
||||
transitivity pseq_colim (λk, spectrify_type_fun' X (S n +' k) (succ k)),
|
||||
fapply pseq_colim_pequiv,
|
||||
{ intro n, apply loopn_pequiv_loopn, apply pequiv_ap X, apply succ_str.add_succ },
|
||||
{ exact abstract begin intro k,
|
||||
refine !passoc⁻¹* ⬝* _, refine pwhisker_right _ (loopn_succ_in_inv_natural (succ k) _) ⬝* _,
|
||||
refine !passoc ⬝* _ ⬝* !passoc⁻¹*, apply pwhisker_left,
|
||||
refine !apn_pcompose⁻¹* ⬝* _ ⬝* !apn_pcompose, apply apn_phomotopy,
|
||||
exact !glue_ptransport⁻¹* end end },
|
||||
refine _ ⬝e* !pseq_colim_loop⁻¹ᵉ*,
|
||||
exact pseq_colim_equiv_constant (λn, !spectrify_type_fun'_succ),
|
||||
end
|
||||
|
||||
definition spectrify [constructor] {N : succ_str} (X : gen_prespectrum N) : gen_spectrum N :=
|
||||
spectrum.MK (spectrify_type X) (spectrify_pequiv X)
|
||||
|
||||
definition spectrify_map {N : succ_str} {X : gen_prespectrum N} : X →ₛ spectrify X :=
|
||||
begin
|
||||
fapply smap.mk,
|
||||
{ intro n, exact pinclusion _ 0 },
|
||||
{ intro n, apply phomotopy_of_psquare,
|
||||
refine !pid_pcompose⁻¹* ⬝ph* _,
|
||||
refine !passoc ⬝* pwhisker_left _ (pshift_equiv_pinclusion (spectrify_type_fun X n) 0) ⬝* _,
|
||||
refine !passoc⁻¹* ⬝* _,
|
||||
refine _ ◾* (spectrify_type_fun_zero X n ⬝* !pid_pcompose⁻¹*),
|
||||
refine !passoc ⬝* pwhisker_left _ !pseq_colim_pequiv_pinclusion ⬝* _,
|
||||
refine pwhisker_left _ (pwhisker_left _ (ap1_pid) ⬝* !pcompose_pid) ⬝* _,
|
||||
refine !passoc ⬝* pwhisker_left _ !seq_colim_equiv_constant_pinclusion ⬝* _,
|
||||
apply pinv_left_phomotopy_of_phomotopy,
|
||||
exact !pseq_colim_loop_pinclusion⁻¹*
|
||||
}
|
||||
end
|
||||
|
||||
definition spectrify.elim_n {N : succ_str} {X : gen_prespectrum N} {Y : gen_spectrum N}
|
||||
(f : X →ₛ Y) (n : N) : (spectrify X) n →* Y n :=
|
||||
begin
|
||||
fapply pseq_colim.elim,
|
||||
{ intro k, refine !equiv_gluen⁻¹ᵉ* ∘* apn k (f (n +' k)) },
|
||||
{ intro k, refine !passoc ⬝* pwhisker_right _ !equiv_gluen_inv_succ ⬝* _,
|
||||
refine !passoc ⬝* _, apply pwhisker_left,
|
||||
refine !passoc ⬝* _,
|
||||
refine pwhisker_left _ ((passoc _ _ (_ ∘* _))⁻¹*) ⬝* _,
|
||||
refine pwhisker_left _ !passoc⁻¹* ⬝* _,
|
||||
refine pwhisker_left _ (pwhisker_right _ (phomotopy_pinv_right_of_phomotopy (!loopn_succ_in_natural)⁻¹*)⁻¹*) ⬝* _,
|
||||
refine pwhisker_right _ !apn_pinv ⬝* _,
|
||||
refine (phomotopy_pinv_left_of_phomotopy _)⁻¹*,
|
||||
refine apn_psquare k _,
|
||||
refine psquare_of_phomotopy !smap.glue_square }
|
||||
end
|
||||
|
||||
definition spectrify.elim {N : succ_str} {X : gen_prespectrum N} {Y : gen_spectrum N}
|
||||
(f : X →ₛ Y) : spectrify X →ₛ Y :=
|
||||
begin
|
||||
fapply smap.mk,
|
||||
{ intro n, exact spectrify.elim_n f n },
|
||||
{ intro n, exact sorry }
|
||||
end
|
||||
|
||||
definition phomotopy_spectrify.elim {N : succ_str} {X : gen_prespectrum N} {Y : gen_spectrum N}
|
||||
(f : X →ₛ Y) (n : N) : spectrify.elim_n f n ∘* spectrify_map n ~* f n :=
|
||||
begin
|
||||
refine pseq_colim.elim_pinclusion _ _ 0 ⬝* _,
|
||||
exact !pid_pcompose
|
||||
end
|
||||
|
||||
definition spectrify_fun {N : succ_str} {X Y : gen_prespectrum N} (f : X →ₛ Y) : spectrify X →ₛ spectrify Y :=
|
||||
spectrify.elim ((@spectrify_map _ Y) ∘ₛ f)
|
||||
|
||||
/-
|
||||
suspension of a spectrum
|
||||
|
||||
this is just a shift. A shift in the other direction is loopn,
|
||||
but we might not want to define that yet.
|
||||
this is just a shift. We could call a shift in the other direction loopn,
|
||||
though it might be more convenient to just take a negative suspension
|
||||
-/
|
||||
|
||||
definition ssusp [constructor] {N : succ_str} (X : gen_spectrum N) : gen_spectrum N :=
|
||||
|
@ -1108,44 +870,8 @@ set_option pp.coercions true
|
|||
|
||||
/- Tensor by spaces -/
|
||||
|
||||
/- Smash product of spectra -/
|
||||
|
||||
open smash
|
||||
|
||||
definition smash_prespectrum (X : Type*) (Y : prespectrum) : prespectrum :=
|
||||
prespectrum.mk (λ z, X ∧ Y z) begin
|
||||
intro n, refine loop_psusp_pintro (X ∧ Y n) (X ∧ Y (n + 1)) _,
|
||||
refine _ ∘* (smash_psusp X (Y n))⁻¹ᵉ*,
|
||||
refine smash_functor !pid _,
|
||||
refine psusp_pelim (Y n) (Y (n + 1)) _,
|
||||
exact !glue
|
||||
end
|
||||
|
||||
definition smash_prespectrum_fun {X X' : Type*} {Y Y' : prespectrum} (f : X →* X') (g : Y →ₛ Y') : smash_prespectrum X Y →ₛ smash_prespectrum X' Y' :=
|
||||
smap.mk (λn, smash_functor f (g n)) begin
|
||||
intro n,
|
||||
refine susp_to_loop_psquare _ _ _ _ _,
|
||||
refine pvconcat (psquare_transpose (phinverse (smash_psusp_natural f (g n)))) _,
|
||||
refine vconcat_phomotopy _ (smash_functor_split f (g (S n))),
|
||||
refine phomotopy_vconcat (smash_functor_split f (psusp_functor (g n))) _,
|
||||
refine phconcat _ _,
|
||||
let glue_adjoint := psusp_pelim (Y n) (Y (S n)) (glue Y n),
|
||||
exact pid X' ∧→ glue_adjoint,
|
||||
exact smash_functor_psquare (pvrefl f) (phrefl glue_adjoint),
|
||||
refine smash_functor_psquare (phrefl (pid X')) _,
|
||||
refine loop_to_susp_square _ _ _ _ _,
|
||||
exact smap.glue_square g n
|
||||
end
|
||||
|
||||
definition smash_spectrum (X : Type*) (Y : spectrum) : spectrum :=
|
||||
spectrify (smash_prespectrum X Y)
|
||||
|
||||
definition smash_spectrum_fun {X X' : Type*} {Y Y' : spectrum} (f : X →* X') (g : Y →ₛ Y') : smash_spectrum X Y →ₛ smash_spectrum X' Y' :=
|
||||
spectrify_fun (smash_prespectrum_fun f g)
|
||||
|
||||
/- Cofibers and stability -/
|
||||
|
||||
|
||||
------------------------------
|
||||
-- Contractible spectrum
|
||||
------------------------------
|
||||
|
@ -1194,6 +920,18 @@ spectrify_fun (smash_prespectrum_fun f g)
|
|||
{ apply is_contr_loop_of_is_contr, exact IH }
|
||||
end
|
||||
|
||||
/- K(πₗ(Aₖ),l) ≃* K(πₙ(A),l) for l = n + k -/
|
||||
definition EM_type_pequiv_EM (A : spectrum) {n k : ℤ} {l : ℕ} (p : n + k = l) :
|
||||
EM_type (A k) l ≃* EM (πₛ[n] A) l :=
|
||||
begin
|
||||
symmetry,
|
||||
cases l with l,
|
||||
{ exact shomotopy_group_pequiv_homotopy_group A p },
|
||||
{ cases l with l,
|
||||
{ apply EM1_pequiv_EM1, exact shomotopy_group_isomorphism_homotopy_group A p },
|
||||
{ apply EMadd1_pequiv_EMadd1 (l+1), exact shomotopy_group_isomorphism_homotopy_group A p }}
|
||||
end
|
||||
|
||||
/- Wedge of prespectra -/
|
||||
|
||||
open fwedge
|
||||
|
@ -1203,8 +941,7 @@ open fwedge
|
|||
fconstructor,
|
||||
{ intro n, exact fwedge (λ i, X i n) },
|
||||
{ intro n, fapply fwedge_pmap,
|
||||
intro i, exact Ω→ !pinl ∘* !glue
|
||||
}
|
||||
intro i, exact Ω→ !pinl ∘* !glue }
|
||||
end
|
||||
|
||||
end spectrum
|
||||
|
|
|
@ -7,62 +7,11 @@ Truncatedness and truncation of spectra
|
|||
-/
|
||||
|
||||
import .spectrum .EM
|
||||
|
||||
namespace int
|
||||
|
||||
-- TODO move this
|
||||
open nat algebra
|
||||
section
|
||||
private definition maxm2_le.lemma₁ {n k : ℕ} : n+(1:int) + -[1+ k] ≤ n :=
|
||||
le.intro (
|
||||
calc n + 1 + -[1+ k] + k
|
||||
= n + 1 + (-(k + 1)) + k : by reflexivity
|
||||
... = n + 1 + (-1 - k) + k : by krewrite (neg_add_rev k 1)
|
||||
... = n + 1 + (-1 - k + k) : add.assoc
|
||||
... = n + 1 + (-1 + -k + k) : by reflexivity
|
||||
... = n + 1 + (-1 + (-k + k)) : add.assoc
|
||||
... = n + 1 + (-1 + 0) : add.left_inv
|
||||
... = n + (1 + (-1 + 0)) : add.assoc
|
||||
... = n : int.add_zero)
|
||||
|
||||
private definition maxm2_le.lemma₂ {n : ℕ} {k : ℤ} : -[1+ n] + 1 + k ≤ k :=
|
||||
le.intro (
|
||||
calc -[1+ n] + 1 + k + n
|
||||
= - (n + 1) + 1 + k + n : by reflexivity
|
||||
... = -n - 1 + 1 + k + n : by rewrite (neg_add n 1)
|
||||
... = -n + (-1 + 1) + k + n : by krewrite (int.add_assoc (-n) (-1) 1)
|
||||
... = -n + 0 + k + n : add.left_inv 1
|
||||
... = -n + k + n : int.add_zero
|
||||
... = k + -n + n : int.add_comm
|
||||
... = k + (-n + n) : int.add_assoc
|
||||
... = k + 0 : add.left_inv n
|
||||
... = k : int.add_zero)
|
||||
|
||||
open trunc_index
|
||||
|
||||
definition maxm2_le (n k : ℤ) : maxm2 (n+1+k) ≤ (maxm1m1 n).+1+2+(maxm1m1 k) :=
|
||||
begin
|
||||
rewrite [-(maxm1_eq_succ n)],
|
||||
induction n with n n,
|
||||
{ induction k with k k,
|
||||
{ induction k with k IH,
|
||||
{ apply le.tr_refl },
|
||||
{ exact succ_le_succ IH } },
|
||||
{ exact trunc_index.le_trans (maxm2_monotone maxm2_le.lemma₁)
|
||||
(maxm2_le_maxm1 n) } },
|
||||
{ krewrite (add_plus_two_comm -1 (maxm1m1 k)),
|
||||
rewrite [-(maxm1_eq_succ k)],
|
||||
exact trunc_index.le_trans (maxm2_monotone maxm2_le.lemma₂)
|
||||
(maxm2_le_maxm1 k) }
|
||||
end
|
||||
end
|
||||
|
||||
end int
|
||||
|
||||
open int trunc eq is_trunc lift unit pointed equiv is_equiv algebra EM
|
||||
|
||||
namespace spectrum
|
||||
|
||||
/- interactions of ptrunc / trunc with maxm2 -/
|
||||
definition ptrunc_maxm2_change_int {k l : ℤ} (p : k = l) (X : Type*)
|
||||
: ptrunc (maxm2 k) X ≃* ptrunc (maxm2 l) X :=
|
||||
ptrunc_change_index (ap maxm2 p) X
|
||||
|
@ -95,14 +44,6 @@ begin
|
|||
{ change is_set (trunc -2 X), apply _ }}
|
||||
end
|
||||
|
||||
definition ptrunc_elim_phomotopy2 [constructor] (k : ℕ₋₂) {A B : Type*} {f g : A →* B} (H₁ : is_trunc k B)
|
||||
(H₂ : is_trunc k B) (p : f ~* g) : @ptrunc.elim k A B H₁ f ~* @ptrunc.elim k A B H₂ g :=
|
||||
begin
|
||||
fapply phomotopy.mk,
|
||||
{ intro x, induction x with a, exact p a },
|
||||
{ exact to_homotopy_pt p }
|
||||
end
|
||||
|
||||
definition loop_ptrunc_maxm2_pequiv_ptrunc_elim' {k : ℤ} {l : ℕ₋₂} (p : maxm2 (k+1) = l)
|
||||
{A B : Type*} (f : A →* B) {H : is_trunc l B} :
|
||||
Ω→ (ptrunc.elim l f) ∘* (loop_ptrunc_maxm2_pequiv p A)⁻¹ᵉ* ~*
|
||||
|
@ -136,15 +77,25 @@ definition is_trunc_of_is_trunc_maxm2 (k : ℤ) (X : Type)
|
|||
: is_trunc (maxm2 k) X → is_trunc (max0 k) X :=
|
||||
λ H, @is_trunc_of_le X _ _ (maxm2_le_maxm0 k) H
|
||||
|
||||
definition strunc [constructor] (k : ℤ) (E : spectrum) : spectrum :=
|
||||
spectrum.MK (λ(n : ℤ), ptrunc (maxm2 (k + n)) (E n))
|
||||
(λ(n : ℤ), ptrunc_pequiv_ptrunc (maxm2 (k + n)) (equiv_glue E n)
|
||||
⬝e* (loop_ptrunc_maxm2_pequiv (ap maxm2 (add.assoc k n 1)) (E (n+1)))⁻¹ᵉ*)
|
||||
definition ptrunc_maxm2_pred {n m : ℤ} (A : Type*) (p : n - 1 = m) :
|
||||
ptrunc (maxm2 m) A ≃* ptrunc (trunc_index.pred (maxm2 n)) A :=
|
||||
begin
|
||||
cases n with n, cases n with n, apply pequiv_of_is_contr,
|
||||
induction p, apply is_trunc_trunc,
|
||||
apply is_contr_ptrunc_minus_one,
|
||||
exact ptrunc_change_index (ap maxm2 (p⁻¹ ⬝ !add_sub_cancel)) A,
|
||||
exact ptrunc_change_index (ap maxm2 p⁻¹) A
|
||||
end
|
||||
|
||||
definition strunc_change_int [constructor] {k l : ℤ} (E : spectrum) (p : k = l) :
|
||||
strunc k E →ₛ strunc l E :=
|
||||
begin induction p, reflexivity end
|
||||
definition ptrunc_maxm2_pred_nat {n : ℕ} {m l : ℤ} (A : Type*)
|
||||
(p : nat.succ n = l) (q : pred l = m) (r : maxm2 m = trunc_index.pred (maxm2 (nat.succ n))) :
|
||||
@ptrunc_maxm2_pred (nat.succ n) m A (ap pred p ⬝ q) ~* ptrunc_change_index r A :=
|
||||
begin
|
||||
have ap maxm2 ((ap pred p ⬝ q)⁻¹ ⬝ add_sub_cancel n 1) = r, from !is_set.elim,
|
||||
induction this, reflexivity
|
||||
end
|
||||
|
||||
/- truncatedness of spectra -/
|
||||
definition is_strunc [reducible] (k : ℤ) (E : spectrum) : Type :=
|
||||
Π (n : ℤ), is_trunc (maxm2 (k + n)) (E n)
|
||||
|
||||
|
@ -163,45 +114,6 @@ definition is_strunc_pequiv_closed {k : ℤ} {E F : spectrum} (H : Πn, E n ≃*
|
|||
(H2 : is_strunc k E) : is_strunc k F :=
|
||||
λn, is_trunc_equiv_closed (maxm2 (k + n)) (H n)
|
||||
|
||||
definition is_strunc_strunc (k : ℤ) (E : spectrum)
|
||||
: is_strunc k (strunc k E) :=
|
||||
λ n, is_trunc_trunc (maxm2 (k + n)) (E n)
|
||||
|
||||
definition is_strunc_strunc_of_is_strunc (k : ℤ) {l : ℤ} {E : spectrum} (H : is_strunc l E)
|
||||
: is_strunc l (strunc k E) :=
|
||||
λ n, !is_trunc_trunc_of_is_trunc
|
||||
|
||||
definition str [constructor] (k : ℤ) (E : spectrum) : E →ₛ strunc k E :=
|
||||
smap.mk (λ n, ptr (maxm2 (k + n)) (E n))
|
||||
abstract begin
|
||||
intro n,
|
||||
apply psquare_of_phomotopy,
|
||||
refine !passoc ⬝* pwhisker_left _ !ptr_natural ⬝* _,
|
||||
refine !passoc⁻¹* ⬝* pwhisker_right _ !loop_ptrunc_maxm2_pequiv_ptr⁻¹*,
|
||||
end end
|
||||
|
||||
definition strunc_elim [constructor] {k : ℤ} {E F : spectrum} (f : E →ₛ F)
|
||||
(H : is_strunc k F) : strunc k E →ₛ F :=
|
||||
smap.mk (λn, ptrunc.elim (maxm2 (k + n)) (f n))
|
||||
abstract begin
|
||||
intro n,
|
||||
apply psquare_of_phomotopy,
|
||||
symmetry,
|
||||
refine !passoc⁻¹* ⬝* pwhisker_right _ !loop_ptrunc_maxm2_pequiv_ptrunc_elim' ⬝* _,
|
||||
refine @(ptrunc_elim_ptrunc_functor _ _ _) _ ⬝* _,
|
||||
refine _ ⬝* @(ptrunc_elim_pcompose _ _ _) _ _,
|
||||
apply is_trunc_maxm2_loop,
|
||||
refine is_trunc_of_eq _ (H (n+1)), exact ap maxm2 (add.assoc k n 1)⁻¹,
|
||||
apply ptrunc_elim_phomotopy2,
|
||||
apply phomotopy_of_psquare,
|
||||
apply ptranspose,
|
||||
apply smap.glue_square
|
||||
end end
|
||||
|
||||
definition strunc_functor [constructor] (k : ℤ) {E F : spectrum} (f : E →ₛ F) :
|
||||
strunc k E →ₛ strunc k F :=
|
||||
strunc_elim (str k F ∘ₛ f) (is_strunc_strunc k F)
|
||||
|
||||
definition is_strunc_sunit (n : ℤ) : is_strunc n sunit :=
|
||||
begin
|
||||
intro k, apply is_trunc_lift, apply is_trunc_unit
|
||||
|
@ -241,6 +153,59 @@ have I : m < 2, from
|
|||
(is_trunc_of_is_trunc_maxm2 m (E (2 - k)) (K (2 - k)))
|
||||
(nat.succ_le_succ (max0_le_of_le (le_sub_one_of_lt I)))
|
||||
|
||||
/- truncation of spectra -/
|
||||
definition strunc [constructor] (k : ℤ) (E : spectrum) : spectrum :=
|
||||
spectrum.MK (λ(n : ℤ), ptrunc (maxm2 (k + n)) (E n))
|
||||
(λ(n : ℤ), ptrunc_pequiv_ptrunc (maxm2 (k + n)) (equiv_glue E n)
|
||||
⬝e* (loop_ptrunc_maxm2_pequiv (ap maxm2 (add.assoc k n 1)) (E (n+1)))⁻¹ᵉ*)
|
||||
|
||||
definition strunc_change_int [constructor] {k l : ℤ} (E : spectrum) (p : k = l) :
|
||||
strunc k E →ₛ strunc l E :=
|
||||
begin induction p, reflexivity end
|
||||
|
||||
definition is_strunc_strunc (k : ℤ) (E : spectrum)
|
||||
: is_strunc k (strunc k E) :=
|
||||
λ n, is_trunc_trunc (maxm2 (k + n)) (E n)
|
||||
|
||||
definition is_strunc_strunc_pred (X : spectrum) (k : ℤ) : is_strunc k (strunc (k - 1) X) :=
|
||||
λn, @(is_trunc_of_le _ (maxm2_monotone (add_le_add_right (sub_one_le k) n))) !is_strunc_strunc
|
||||
|
||||
definition is_strunc_strunc_of_is_strunc (k : ℤ) {l : ℤ} {E : spectrum} (H : is_strunc l E)
|
||||
: is_strunc l (strunc k E) :=
|
||||
λ n, !is_trunc_trunc_of_is_trunc
|
||||
|
||||
definition str [constructor] (k : ℤ) (E : spectrum) : E →ₛ strunc k E :=
|
||||
smap.mk (λ n, ptr (maxm2 (k + n)) (E n))
|
||||
abstract begin
|
||||
intro n,
|
||||
apply psquare_of_phomotopy,
|
||||
refine !passoc ⬝* pwhisker_left _ !ptr_natural ⬝* _,
|
||||
refine !passoc⁻¹* ⬝* pwhisker_right _ !loop_ptrunc_maxm2_pequiv_ptr⁻¹*,
|
||||
end end
|
||||
|
||||
definition strunc_elim [constructor] {k : ℤ} {E F : spectrum} (f : E →ₛ F)
|
||||
(H : is_strunc k F) : strunc k E →ₛ F :=
|
||||
smap.mk (λn, ptrunc.elim (maxm2 (k + n)) (f n))
|
||||
abstract begin
|
||||
intro n,
|
||||
apply psquare_of_phomotopy,
|
||||
symmetry,
|
||||
refine !passoc⁻¹* ⬝* pwhisker_right _ !loop_ptrunc_maxm2_pequiv_ptrunc_elim' ⬝* _,
|
||||
refine @(ptrunc_elim_ptrunc_functor _ _ _) _ ⬝* _,
|
||||
refine _ ⬝* @(ptrunc_elim_pcompose _ _ _) _ _,
|
||||
apply is_trunc_maxm2_loop,
|
||||
refine is_trunc_of_eq _ (H (n+1)), exact ap maxm2 (add.assoc k n 1)⁻¹,
|
||||
apply ptrunc_elim_phomotopy2,
|
||||
apply phomotopy_of_psquare,
|
||||
apply ptranspose,
|
||||
apply smap.glue_square
|
||||
end end
|
||||
|
||||
definition strunc_functor [constructor] (k : ℤ) {E F : spectrum} (f : E →ₛ F) :
|
||||
strunc k E →ₛ strunc k F :=
|
||||
strunc_elim (str k F ∘ₛ f) (is_strunc_strunc k F)
|
||||
|
||||
/- truncated spectra -/
|
||||
structure truncspectrum (n : ℤ) :=
|
||||
(carrier : spectrum)
|
||||
(struct : is_strunc n carrier)
|
||||
|
@ -249,12 +214,18 @@ notation n `-spectrum` := truncspectrum n
|
|||
|
||||
attribute truncspectrum.carrier [coercion]
|
||||
|
||||
definition genspectrum_of_truncspectrum (n : ℤ)
|
||||
: n-spectrum → gen_spectrum +ℤ :=
|
||||
definition genspectrum_of_truncspectrum [coercion] (n : ℤ) : n-spectrum → gen_spectrum +ℤ :=
|
||||
λ E, truncspectrum.carrier E
|
||||
|
||||
attribute genspectrum_of_truncspectrum [coercion]
|
||||
/- Comment (by Floris):
|
||||
|
||||
I think we should really not bundle truncated spectra up,
|
||||
unless we are interested in the type of truncated spectra (e.g. when proving n-spectrum ≃ ...).
|
||||
Properties of truncated a spectrum should just be stated with two assumptions
|
||||
(X : spectrum) (H : is_strunc n X)
|
||||
-/
|
||||
|
||||
/- truncatedness of spi and sp_cotensor assuming the domain has a level of connectedness -/
|
||||
section
|
||||
|
||||
open is_conn
|
||||
|
|
|
@ -1,9 +1,15 @@
|
|||
import homotopy.susp types.pointed2 ..move_to_lib
|
||||
|
||||
open susp eq pointed function is_equiv lift equiv is_trunc
|
||||
open susp eq pointed function is_equiv lift equiv is_trunc nat
|
||||
|
||||
namespace susp
|
||||
variables {X X' Y Y' Z : Type*}
|
||||
|
||||
/- TODO: remove susp and rename psusp to susp -/
|
||||
definition psuspn : ℕ → Type* → Type*
|
||||
| psuspn 0 X := X
|
||||
| psuspn (succ n) X := psusp (psuspn n X)
|
||||
|
||||
definition susp_functor_pconst_homotopy [unfold 3] {X Y : Type*} (x : psusp X) :
|
||||
psusp_functor (pconst X Y) x = pt :=
|
||||
begin
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
import homotopy.sphere2 homotopy.cofiber homotopy.wedge hit.prop_trunc hit.set_quotient eq2 types.pointed2
|
||||
|
||||
open eq nat int susp pointed pmap sigma is_equiv equiv fiber algebra trunc pi group
|
||||
is_trunc function sphere unit prod bool
|
||||
is_trunc function unit prod bool
|
||||
|
||||
attribute pType.sigma_char sigma_pi_equiv_pi_sigma sigma.coind_unc [constructor]
|
||||
attribute ap1_gen [unfold 8 9 10]
|
||||
|
@ -220,6 +220,31 @@ end trunc_index
|
|||
|
||||
namespace int
|
||||
|
||||
private definition maxm2_le.lemma₁ {n k : ℕ} : n+(1:int) + -[1+ k] ≤ n :=
|
||||
le.intro (
|
||||
calc n + 1 + -[1+ k] + k
|
||||
= n + 1 + (-(k + 1)) + k : by reflexivity
|
||||
... = n + 1 + (- 1 - k) + k : by krewrite (neg_add_rev k 1)
|
||||
... = n + 1 + (- 1 - k + k) : add.assoc
|
||||
... = n + 1 + (- 1 + -k + k) : by reflexivity
|
||||
... = n + 1 + (- 1 + (-k + k)) : add.assoc
|
||||
... = n + 1 + (- 1 + 0) : add.left_inv
|
||||
... = n + (1 + (- 1 + 0)) : add.assoc
|
||||
... = n : int.add_zero)
|
||||
|
||||
private definition maxm2_le.lemma₂ {n : ℕ} {k : ℤ} : -[1+ n] + 1 + k ≤ k :=
|
||||
le.intro (
|
||||
calc -[1+ n] + 1 + k + n
|
||||
= - (n + 1) + 1 + k + n : by reflexivity
|
||||
... = -n - 1 + 1 + k + n : by rewrite (neg_add n 1)
|
||||
... = -n + (- 1 + 1) + k + n : by krewrite (int.add_assoc (-n) (- 1) 1)
|
||||
... = -n + 0 + k + n : add.left_inv 1
|
||||
... = -n + k + n : int.add_zero
|
||||
... = k + -n + n : int.add_comm
|
||||
... = k + (-n + n) : int.add_assoc
|
||||
... = k + 0 : add.left_inv n
|
||||
... = k : int.add_zero)
|
||||
|
||||
open trunc_index
|
||||
/-
|
||||
The function from integers to truncation indices which sends
|
||||
|
@ -290,6 +315,24 @@ namespace int
|
|||
definition le_add_one (n : ℤ) : n ≤ n + 1:=
|
||||
le_add_nat n 1
|
||||
|
||||
open trunc_index
|
||||
|
||||
definition maxm2_le (n k : ℤ) : maxm2 (n+1+k) ≤ (maxm1m1 n).+1+2+(maxm1m1 k) :=
|
||||
begin
|
||||
rewrite [-(maxm1_eq_succ n)],
|
||||
induction n with n n,
|
||||
{ induction k with k k,
|
||||
{ induction k with k IH,
|
||||
{ apply le.tr_refl },
|
||||
{ exact succ_le_succ IH } },
|
||||
{ exact trunc_index.le_trans (maxm2_monotone maxm2_le.lemma₁)
|
||||
(maxm2_le_maxm1 n) } },
|
||||
{ krewrite (add_plus_two_comm -1 (maxm1m1 k)),
|
||||
rewrite [-(maxm1_eq_succ k)],
|
||||
exact trunc_index.le_trans (maxm2_monotone maxm2_le.lemma₂)
|
||||
(maxm2_le_maxm1 k) }
|
||||
end
|
||||
|
||||
end int open int
|
||||
|
||||
namespace pmap
|
||||
|
@ -390,6 +433,15 @@ namespace trunc
|
|||
definition trunc_index.pred [unfold 1] (n : ℕ₋₂) : ℕ₋₂ :=
|
||||
begin cases n with n, exact -2, exact n end
|
||||
|
||||
/- A more general version of ptrunc_elim_phomotopy, where the proofs of truncatedness might be different -/
|
||||
definition ptrunc_elim_phomotopy2 [constructor] (k : ℕ₋₂) {A B : Type*} {f g : A →* B} (H₁ : is_trunc k B)
|
||||
(H₂ : is_trunc k B) (p : f ~* g) : @ptrunc.elim k A B H₁ f ~* @ptrunc.elim k A B H₂ g :=
|
||||
begin
|
||||
fapply phomotopy.mk,
|
||||
{ intro x, induction x with a, exact p a },
|
||||
{ exact to_homotopy_pt p }
|
||||
end
|
||||
|
||||
end trunc
|
||||
|
||||
namespace is_trunc
|
||||
|
|
Loading…
Reference in a new issue