From 6e6fad5cb2080cc94d229fa26d4621845336fcfd Mon Sep 17 00:00:00 2001 From: Floris van Doorn Date: Mon, 5 Jun 2017 17:09:48 -0400 Subject: [PATCH] fix error --- TODO.txt | 24 ++++++++++++++++++++++++ homotopy/EM.hlean | 5 +++-- homotopy/cohomology.hlean | 2 +- 3 files changed, 28 insertions(+), 3 deletions(-) diff --git a/TODO.txt b/TODO.txt index 79ce9f0..6e97c0b 100644 --- a/TODO.txt +++ b/TODO.txt @@ -8,3 +8,27 @@ talk with Favonia about: - higher cube filling strategies - HIT equivalences - algebra + + +/- +Adjointness: +Σ X ⟶ Y X ∧ Y → Z +======= =========== +X → Ω Y X → (Y → Z) + +Spectrum: Y : ℕ → Type* with e : Ω Yₙ₊₁ ≃* Yₙ. + + +HOMOLOGY: +Hₙ(X, Y) :≡? ∥ X ∧ Ω² (Y (n+2)) ∥₀ ≃ ∥ X ∧ Y n ∥₀ + +Eilenberg Steenrod-axioms: +H : ℤ → Type* → AbGroup +- functorial in second argument +- (optional): respects pointed equivalences and pointed homotopies +axioms: +- the canonical map +- +- Given (Xᵢ)ᵢ : I → Type* (satisfying AC?) the canonical functor + ⊕ hₙ +-/ diff --git a/homotopy/EM.hlean b/homotopy/EM.hlean index b03c487..33acbbe 100644 --- a/homotopy/EM.hlean +++ b/homotopy/EM.hlean @@ -1,6 +1,6 @@ -- Authors: Floris van Doorn -import homotopy.EM algebra.category.functor.equivalence ..pointed ..pointed_pi +import homotopy.EM algebra.category.functor.equivalence types.pointed2 ..pointed_pi ..pointed open eq equiv is_equiv algebra group nat pointed EM.ops is_trunc trunc susp function is_conn @@ -617,7 +617,8 @@ namespace EM (trivial_homotopy_group_of_is_trunc (ptrunc 0 A) !zero_lt_succ), exact sorry -- rexact isomorphism_of_equiv (equiv_of_isomorphism z) sorry }, - { apply @is_conn_fun_trunc_elim, apply is_conn_fun_tr } + { apply @is_conn_fun_trunc_elim, apply is_conn_fun_tr }, + { apply is_trunc_pfiber } end definition pfiber_postnikov_map_succ (A : Type*) (n : ℕ) : diff --git a/homotopy/cohomology.hlean b/homotopy/cohomology.hlean index e28f923..38a7e4c 100644 --- a/homotopy/cohomology.hlean +++ b/homotopy/cohomology.hlean @@ -15,7 +15,7 @@ namespace cohomology /- The cohomology of X with coefficients in Y is trunc 0 (A →* Ω[2] (Y (n+2))) - In the file arrow_group (in algebra) we construct the group structor on this type. + In the file arrow_group (in algebra) we construct the group structure on this type. -/ definition cohomology (X : Type*) (Y : spectrum) (n : ℤ) : AbGroup := AbGroup_trunc_pmap X (Y (n+2))