diff --git a/algebra/.#exact_couple.hlean b/algebra/.#exact_couple.hlean new file mode 120000 index 0000000..852a499 --- /dev/null +++ b/algebra/.#exact_couple.hlean @@ -0,0 +1 @@ +Steve@steveawodeysAir.wv.cc.cmu.edu.6485 \ No newline at end of file diff --git a/algebra/quotient_group.hlean b/algebra/quotient_group.hlean index 963cd70..676fb4b 100644 --- a/algebra/quotient_group.hlean +++ b/algebra/quotient_group.hlean @@ -372,7 +372,7 @@ definition is_embedding_kernel_quotient_to_image {A B : AbGroup} (f : A →g B) exact is_embedding_kernel_quotient_extension f end -definition ab_group_first_iso_thm (A B : AbGroup) (f : A →g B) +definition ab_group_first_iso_thm {A B : AbGroup} (f : A →g B) : quotient_ab_group (kernel_subgroup f) ≃g ab_image f := begin fapply isomorphism.mk, @@ -382,8 +382,11 @@ definition ab_group_first_iso_thm (A B : AbGroup) (f : A →g B) exact is_surjective_kernel_quotient_to_image f end - - +definition codomain_surjection_is_quotient (A B : AbGroup) (f : A →g B)( H : is_surjective f) + : quotient_ab_group (kernel_subgroup f) ≃g B := + begin + exact (ab_group_first_iso_thm f) ⬝g (iso_surjection_ab_image_incl f H) + end -- print iff.mpr diff --git a/algebra/subgroup.hlean b/algebra/subgroup.hlean index 33e382d..532d3f2 100644 --- a/algebra/subgroup.hlean +++ b/algebra/subgroup.hlean @@ -281,7 +281,28 @@ namespace group definition image_incl {G H : Group} (f : G →g H) : image f →g H := incl_of_subgroup (image_subgroup f) - definition comm_image_incl {A B : AbGroup} (f : A →g B) : ab_image f →g B := incl_of_subgroup (image_subgroup f) + definition ab_image_incl {A B : AbGroup} (f : A →g B) : ab_image f →g B := incl_of_subgroup (image_subgroup f) + + definition is_equiv_surjection_ab_image_incl {A B : AbGroup} (f : A →g B) (H : is_surjective f) : is_equiv (ab_image_incl f ) := + begin + fapply is_equiv.adjointify (ab_image_incl f), + intro b, + fapply sigma.mk, + exact b, + exact H b, + intro b, + reflexivity, + intro x, + apply subtype_eq, + reflexivity + end + + definition iso_surjection_ab_image_incl {A B : AbGroup} (f : A →g B) (H : is_surjective f) : ab_image f ≃g B := + begin + fapply isomorphism.mk, + exact (ab_image_incl f), + exact is_equiv_surjection_ab_image_incl f H + end definition hom_lift {G H : Group} (f : G →g H) (K : subgroup_rel H) (Hyp : Π (g : G), K (f g)) : G →g subgroup K := begin