minor changes
This commit is contained in:
parent
627b2acfe3
commit
704717e9ae
5 changed files with 57 additions and 700 deletions
1
.gitignore
vendored
1
.gitignore
vendored
|
@ -13,6 +13,7 @@ GPATH
|
|||
GRTAGS
|
||||
GSYMS
|
||||
GTAGS
|
||||
TAGS
|
||||
Makefile
|
||||
*.cmake
|
||||
CMakeFiles/
|
||||
|
|
692
TAGS
692
TAGS
|
@ -1,692 +0,0 @@
|
|||
|
||||
homotopy/spherical_fibrations.hlean,1152
|
||||
definition pointed_BFspherical_fibrations.pointed_BF50,1310
|
||||
definition pBGspherical_fibrations.pBG15,414
|
||||
definition BF_of_BG_mulspherical_fibrations.BF_of_BG_mul95,2692
|
||||
definition BFspherical_fibrations.BF47,1244
|
||||
definition thom_spacespherical_fibrations.thom.thom_space109,3059
|
||||
definition mirrorspherical_fibrations.mirror23,605
|
||||
definition Gspherical_fibrations.G17,484
|
||||
definition G_charspherical_fibrations.G_char20,537
|
||||
definition BG_mulspherical_fibrations.BG_mul78,2096
|
||||
definition BF_succspherical_fibrations.BF_succ55,1496
|
||||
definition BG_of_BFspherical_fibrations.BG_of_BF71,1919
|
||||
definition BF_of_BGspherical_fibrations.BF_of_BG62,1681
|
||||
protected definition secspherical_fibrations.thom.sec104,2964
|
||||
definition tauspherical_fibrations.two_sphere.tau144,4263
|
||||
definition BG_succspherical_fibrations.BG_succ39,1009
|
||||
definition pBFspherical_fibrations.pBF53,1426
|
||||
definition pointed_BGspherical_fibrations.pointed_BG12,301
|
||||
definition BF_mulspherical_fibrations.BF_mul87,2401
|
||||
definition BGspherical_fibrations.BG9,233
|
||||
definition S_of_BGspherical_fibrations.S_of_BG36,936
|
||||
|
||||
homotopy/homotopy_groups.hlean,743
|
||||
definition group_equiv_onemy.group_equiv_one44,1189
|
||||
theorem group_equiv_mul_assocmy.group_equiv_mul_assoc52,1423
|
||||
theorem group_equiv_mul_onemy.group_equiv_mul_one58,1710
|
||||
definition group_equiv_invmy.group_equiv_inv46,1234
|
||||
theorem ap1_conmy.ap1_con25,626
|
||||
theorem group_equiv_mul_left_invmy.group_equiv_mul_left_inv61,1852
|
||||
definition group_equiv_closedmy.group_equiv_closed65,2030
|
||||
theorem group_equiv_one_mulmy.group_equiv_one_mul55,1568
|
||||
definition group_equiv_mulmy.group_equiv_mul42,1118
|
||||
definition apn_composemy.apn_compose18,411
|
||||
definition apn_conmy.apn_con30,784
|
||||
definition homotopy_group_homomorphismeq.homotopy_group_homomorphism83,2503
|
||||
definition tr_mulmy.tr_mul34,931
|
||||
|
||||
homotopy/sample.hlean,1236
|
||||
definition is_conn_of_map_from_unithomotopy.is_conn_of_map_from_unit97,3227
|
||||
definition is_connhomotopy.is_conn12,308
|
||||
definition elimhomotopy.is_conn_fun.elim51,1665
|
||||
definition is_conn_homotopyhomotopy.is_conn_homotopy154,4935
|
||||
definition introhomotopy.is_conn_fun.intro70,2280
|
||||
definition is_conn_funhomotopy.is_conn_fun24,636
|
||||
definition rechomotopy.is_conn_fun.rec39,1224
|
||||
definition is_conn_of_map_to_unithomotopy.is_conn_of_map_to_unit88,2969
|
||||
definition merely_of_minus_one_connhomotopy.merely_of_minus_one_conn131,4268
|
||||
definition minus_one_conn_of_merelyhomotopy.minus_one_conn_of_merely134,4364
|
||||
definition is_conn_susphomotopy.is_conn_susp165,5320
|
||||
definition minus_one_conn_of_surjectivehomotopy.minus_one_conn_of_surjective117,3839
|
||||
definition is_conn_fun_from_unithomotopy.is_conn_fun_from_unit106,3534
|
||||
definition is_surjection_of_minus_one_connhomotopy.is_surjection_of_minus_one_conn124,4078
|
||||
definition is_conn_equiv_closedhomotopy.is_conn_equiv_closed15,404
|
||||
definition minus_two_connhomotopy.minus_two_conn159,5215
|
||||
definition elim_βhomotopy.is_conn_fun.elim_β54,1767
|
||||
definition retract_of_conn_is_connhomotopy.retract_of_conn_is_conn143,4572
|
||||
|
||||
homotopy/LES_applications.hlean,701
|
||||
definition add_plus_one_minus_oneis_conn.add_plus_one_minus_one110,4328
|
||||
definition add_plus_one_succis_conn.add_plus_one_succ111,4398
|
||||
definition eq_even_or_eq_oddnat.eq_even_or_eq_odd7,278
|
||||
definition join_empty_rightis_conn.join_empty_right87,3633
|
||||
definition succ_add_plus_oneis_conn.succ_add_plus_one114,4613
|
||||
definition rec_on_even_oddnat.rec_on_even_odd16,554
|
||||
theorem is_surjective_π_of_is_connectedis_conn.is_surjective_π_of_is_connected69,2838
|
||||
definition minus_one_add_plus_oneis_conn.minus_one_add_plus_one112,4480
|
||||
definition natural_square2is_conn.natural_square2102,4049
|
||||
theorem is_equiv_π_of_is_connectedis_conn.is_equiv_π_of_is_connected32,921
|
||||
|
||||
homotopy/LES_of_homotopy_groups.hlean,8241
|
||||
definition LES_of_homotopy_groups3_1chain_complex.LES_of_homotopy_groups3_1882,34115
|
||||
definition is_exact_LES_of_homotopy_groups3chain_complex.is_exact_LES_of_homotopy_groups3857,32991
|
||||
definition LES_of_homotopy_groups3_4chain_complex.LES_of_homotopy_groups3_4888,34446
|
||||
definition homotopy_groups_fun2chain_complex.homotopy_groups_fun2544,20051
|
||||
definition LES_of_homotopy_groups_mul3add2'chain_complex.LES_of_homotopy_groups_mul3add2'477,17839
|
||||
definition LES_of_homotopy_groups3_3chain_complex.LES_of_homotopy_groups3_3886,34336
|
||||
definition tr_mul_trchain_complex.tr_mul_tr500,18472
|
||||
definition is_exact_fiber_sequencechain_complex.is_exact_fiber_sequence80,2506
|
||||
definition boundary_mapchain_complex.boundary_map225,8385
|
||||
theorem fiber_sequence_fun_phomotopychain_complex.fiber_sequence_fun_phomotopy216,8057
|
||||
definition is_exact_LES_of_homotopy_groupschain_complex.is_exact_LES_of_homotopy_groups410,15146
|
||||
definition LES_of_homotopy_groups3_2chain_complex.LES_of_homotopy_groups3_2884,34221
|
||||
definition homotopy_groups_mul3add2chain_complex.homotopy_groups_mul3add2254,9279
|
||||
definition type_LES_of_homotopy_groupschain_complex.type_LES_of_homotopy_groups386,14323
|
||||
definition homotopy_groups_fun2_add1_5chain_complex.homotopy_groups_fun2_add1_5592,22238
|
||||
definition homotopy_groups_fun'chain_complex.homotopy_groups_fun'276,10198
|
||||
definition fin_prod_nat_equiv_natchain_complex.fin_prod_nat_equiv_nat620,23461
|
||||
definition fiber_sequence_helpernchain_complex.fiber_sequence_helpern54,1759
|
||||
theorem fiber_sequence_carrier_pequiv_eq_point_eq_idpchain_complex.fiber_sequence_carrier_pequiv_eq_point_eq_idp177,6559
|
||||
definition homotopy_groups_funchain_complex.homotopy_groups_fun260,9523
|
||||
definition fiber_sequence_carrierchain_complex.fiber_sequence_carrier62,1987
|
||||
definition homotopy_groups_fun_add3chain_complex.homotopy_groups_fun_add3312,11532
|
||||
definition comm_group_LES_of_homotopy_groupschain_complex.comm_group_LES_of_homotopy_groups486,18179
|
||||
definition LES_of_homotopy_groups2chain_complex.LES_of_homotopy_groups2779,30007
|
||||
definition LES_of_homotopy_groups_mul3add1chain_complex.LES_of_homotopy_groups_mul3add1451,17024
|
||||
definition homotopy_groups_add3chain_complex.homotopy_groups_add3240,8787
|
||||
definition LES_of_homotopy_groups3_0chain_complex.LES_of_homotopy_groups3_0880,34009
|
||||
definition homotopy_groups3eq2chain_complex.homotopy_groups3eq2794,30462
|
||||
definition fiber_sequence_helperchain_complex.fiber_sequence_helper50,1612
|
||||
definition homotopy_groups2_pequiv'chain_complex.homotopy_groups2_pequiv'641,24217
|
||||
definition fiber_sequence_carrier_equiv_inv_eqchain_complex.fiber_sequence_carrier_equiv_inv_eq125,4437
|
||||
definition homotopy_groups2chain_complex.homotopy_groups2526,19349
|
||||
definition fiber_sequence_pequiv_homotopy_groupschain_complex.fiber_sequence_pequiv_homotopy_groups319,11794
|
||||
definition is_homomorphism_cast_loop_space_succ_eq_inchain_complex.is_homomorphism_cast_loop_space_succ_eq_in504,18597
|
||||
definition fiber_sequence_funchain_complex.fiber_sequence_fun65,2078
|
||||
definition LES_of_homotopy_groups_mul3add1'chain_complex.LES_of_homotopy_groups_mul3add1'471,17652
|
||||
definition nat_of_str_6Schain_complex.nat_of_str_6S610,23009
|
||||
definition homotopy_groups_mul3chain_complex.homotopy_groups_mul3244,8912
|
||||
definition LES_of_homotopy_groupschain_complex.LES_of_homotopy_groups401,14827
|
||||
definition homotopy_groups_fun2_add1_4chain_complex.homotopy_groups_fun2_add1_4583,21862
|
||||
definition homotopy_groups3chain_complex.homotopy_groups3786,30178
|
||||
definition fiber_sequence_pequiv_homotopy_groups_3_phomotopychain_complex.fiber_sequence_pequiv_homotopy_groups_3_phomotopy336,12382
|
||||
definition homotopy_groupschain_complex.homotopy_groups234,8658
|
||||
definition homotopy_groups_fun2_add1_2chain_complex.homotopy_groups_fun2_add1_2565,21099
|
||||
definition homotopy_groups_fun2_phomotopychain_complex.homotopy_groups_fun2_phomotopy689,26060
|
||||
definition LES_of_homotopy_groups3_5chain_complex.LES_of_homotopy_groups3_5890,34556
|
||||
definition LES_of_homotopy_groups_fun3_1chain_complex.LES_of_homotopy_groups_fun3_1899,34906
|
||||
definition group_LES_of_homotopy_groups3_0chain_complex.group_LES_of_homotopy_groups3_0916,35755
|
||||
definition CommGroup_LES_of_homotopy_groups3chain_complex.CommGroup_LES_of_homotopy_groups3933,36775
|
||||
definition is_exact_type_LES_of_homotopy_groups2chain_complex.is_exact_type_LES_of_homotopy_groups2772,29801
|
||||
theorem homotopy_groups_fun_eqchain_complex.homotopy_groups_fun_eq287,10605
|
||||
definition LES_of_homotopy_groups_mul3'chain_complex.LES_of_homotopy_groups_mul3'465,17477
|
||||
definition LES_of_homotopy_groups_fun3_0chain_complex.LES_of_homotopy_groups_fun3_0896,34780
|
||||
definition comm_group_LES_of_homotopy_groups3chain_complex.comm_group_LES_of_homotopy_groups3923,36148
|
||||
definition homotopy_groups_fun2_add1_1chain_complex.homotopy_groups_fun2_add1_1560,20890
|
||||
definition fiber_sequence_pequiv_homotopy_groups_add3chain_complex.fiber_sequence_pequiv_homotopy_groups_add3331,12158
|
||||
definition homotopy_groups_fun'_add3chain_complex.homotopy_groups_fun'_add3283,10455
|
||||
definition is_homomorphism_inversechain_complex.is_homomorphism_inverse514,19037
|
||||
theorem fiber_sequence_fun_phomotopy_helperchain_complex.fiber_sequence_fun_phomotopy_helper194,7170
|
||||
definition homotopy_groups_fun_add6chain_complex.homotopy_groups_fun_add6270,9919
|
||||
definition LES_of_homotopy_groups_fun3_5chain_complex.LES_of_homotopy_groups_fun3_5911,35532
|
||||
theorem fiber_sequence_phomotopy_homotopy_groups'chain_complex.fiber_sequence_phomotopy_homotopy_groups'344,12670
|
||||
definition LES_of_homotopy_groups_fun3_4chain_complex.LES_of_homotopy_groups_fun3_4908,35381
|
||||
definition is_exact_type_LES_of_homotopy_groupschain_complex.is_exact_type_LES_of_homotopy_groups393,14582
|
||||
definition fiber_sequence_carrier_equiv_eqchain_complex.fiber_sequence_carrier_equiv_eq110,3830
|
||||
definition LES_of_homotopy_groups_mul3chain_complex.LES_of_homotopy_groups_mul3444,16814
|
||||
definition LES_of_homotopy_groups3chain_complex.LES_of_homotopy_groups3850,32786
|
||||
theorem fiber_sequence_phomotopy_homotopy_groupschain_complex.fiber_sequence_phomotopy_homotopy_groups377,13934
|
||||
definition LES_of_homotopy_groups_mul3add2chain_complex.LES_of_homotopy_groups_mul3add2458,17246
|
||||
definition homotopy_groups_fun3chain_complex.homotopy_groups_fun3804,30894
|
||||
definition homotopy_groups_mul3add1chain_complex.homotopy_groups_mul3add1249,9089
|
||||
definition fiber_sequence_carrier_pequiv_inv_eqchain_complex.fiber_sequence_carrier_pequiv_inv_eq149,5360
|
||||
definition fiber_sequence_carrier_pequivchain_complex.fiber_sequence_carrier_pequiv134,4778
|
||||
theorem fiber_sequence_fun_eqchain_complex.fiber_sequence_fun_eq208,7685
|
||||
definition fiber_sequence_carrier_equivchain_complex.fiber_sequence_carrier_equiv84,2664
|
||||
definition nat_of_strchain_complex.nat_of_str604,22800
|
||||
definition fiber_sequencechain_complex.fiber_sequence70,2251
|
||||
definition str_of_natchain_complex.str_of_nat607,22917
|
||||
definition homomorphism_LES_of_homotopy_groups_fun3chain_complex.homomorphism_LES_of_homotopy_groups_fun3937,36984
|
||||
definition homotopy_groups_fun3eq2chain_complex.homotopy_groups_fun3eq2816,31572
|
||||
definition homotopy_groups_fun2_add1_0chain_complex.homotopy_groups_fun2_add1_0555,20681
|
||||
definition fiber_sequence_fun_eq_helperchain_complex.fiber_sequence_fun_eq_helper157,5693
|
||||
definition homotopy_groups2_add1chain_complex.homotopy_groups2_add1534,19628
|
||||
definition homotopy_groups_fun2_add1_3chain_complex.homotopy_groups_fun2_add1_3574,21486
|
||||
definition LES_of_homotopy_groups_fun3_3chain_complex.LES_of_homotopy_groups_fun3_3905,35239
|
||||
definition LES_of_homotopy_groups_fun3_2chain_complex.LES_of_homotopy_groups_fun3_2902,35041
|
||||
definition type_LES_of_homotopy_groups2chain_complex.type_LES_of_homotopy_groups2758,29331
|
||||
definition homotopy_groups2_pequivchain_complex.homotopy_groups2_pequiv684,25855
|
||||
definition group_LES_of_homotopy_groupschain_complex.group_LES_of_homotopy_groups483,18035
|
||||
definition fiber_sequence_carrier_pequiv_eqchain_complex.fiber_sequence_carrier_pequiv_eq142,5004
|
||||
|
||||
group_theory/constructions.hlean,10223
|
||||
definition normal_subgroup_kernelgroup.normal_subgroup_kernel721,26462
|
||||
structure Rinvgroup.normal_subgroup_rel.Rinv23,565
|
||||
| rinvgroup.generating_relation'.rinv614,22880
|
||||
| rreflgroup.free_comm_group.fcg_rel.rrefl435,16260
|
||||
definition fcg_mulgroup.free_comm_group.fcg_mul492,18417
|
||||
theorem subgroup_one_mulgroup.subgroup_one_mul82,3290
|
||||
structure rec_ongroup.normal_subgroup_rel.rec_on23,565
|
||||
definition quotient_comm_group_gengroup.quotient_comm_group_gen633,23558
|
||||
structure Rgroup.subgroup_rel.R17,410
|
||||
theorem kernel_mulgroup.kernel_mul680,25173
|
||||
definition sggroup.sg65,2698
|
||||
theorem subgroup_mul_assocgroup.subgroup_mul_assoc79,3183
|
||||
| rmulgroup.generating_relation'.rmul613,22779
|
||||
definition subgroup_onegroup.subgroup_one68,2786
|
||||
definition is_reflexive_Rgroup.free_group.is_reflexive_R290,10899
|
||||
inductive cases_ongroup.free_group.free_group_rel.cases_on274,10175
|
||||
abbreviation subgroup_has_onegroup.subgroup_has_one28,791
|
||||
definition free_group_onegroup.free_group.free_group_one315,11815
|
||||
theorem quotient_rel_symmgroup.quotient_rel_symm120,4459
|
||||
| resp_appendgroup.free_group.free_group_rel.resp_append278,10373
|
||||
definition fcg_carriergroup.free_comm_group.fcg_carrier449,16786
|
||||
definition group_qggroup.group_qg210,7984
|
||||
theorem product_one_mulgroup.product_one_mul240,9105
|
||||
definition free_group_inclusiongroup.free_group_inclusion376,13925
|
||||
structure destructgroup.subgroup_rel.destruct17,410
|
||||
definition free_comm_group_inclusiongroup.free_comm_group_inclusion560,20652
|
||||
theorem free_group_mul_left_invgroup.free_group.free_group_mul_left_inv348,12968
|
||||
definition group_prodgroup.group_prod255,9511
|
||||
| rtransgroup.free_group.free_group_rel.rtrans280,10519
|
||||
definition free_comm_group_homgroup.free_comm_group_hom575,21250
|
||||
definition normal_generating_relationgroup.normal_generating_relation625,23357
|
||||
definition free_comm_groupgroup.free_comm_group555,20471
|
||||
structure to_subgroup_relgroup.normal_subgroup_rel.to_subgroup_rel23,565
|
||||
definition free_group_invgroup.free_group.free_group_inv316,11879
|
||||
structure Rmulgroup.normal_subgroup_rel.Rmul23,565
|
||||
theorem rel_respect_reversegroup.free_comm_group.rel_respect_reverse468,17493
|
||||
theorem free_group_mul_assocgroup.free_group.free_group_mul_assoc327,12349
|
||||
structure normal_subgroup_relgroup.normal_subgroup_rel23,565
|
||||
definition gr_mulgroup.gr_mul622,23272
|
||||
theorem product_mul_assocgroup.product_mul_assoc237,8989
|
||||
definition quotient_comm_groupgroup.quotient_comm_group221,8428
|
||||
theorem fcg_one_mulgroup.free_comm_group.fcg_one_mul509,18950
|
||||
abbreviation subgroup_respect_mulgroup.subgroup_respect_mul29,860
|
||||
definition comm_group_prodgroup.comm_group_prod262,9779
|
||||
inductive fcg_relgroup.free_comm_group.fcg_rel.rec434,16208
|
||||
definition quotient_relgroup.quotient_rel115,4268
|
||||
inductive dirsum_relgroup.dirsum_rel643,23866
|
||||
theorem quotient_mul_assocgroup.quotient_mul_assoc172,6919
|
||||
theorem product_mul_commgroup.product_mul_comm249,9371
|
||||
definition subgroupgroup.subgroup102,3873
|
||||
theorem fgh_helper_respect_comm_relgroup.fgh_helper_respect_comm_rel563,20753
|
||||
theorem quotient_rel_transgroup.quotient_rel_trans123,4623
|
||||
definition kernelgroup.kernel678,25082
|
||||
definition qggroup.qg157,6375
|
||||
definition comm_subgroupgroup.comm_subgroup109,4111
|
||||
definition direct_sumgroup.direct_sum646,23998
|
||||
structure normal_subgroup_relgroup.normal_subgroup_rel.rec23,565
|
||||
definition gr_invgroup.gr_inv620,23198
|
||||
theorem rel_cons_concatgroup.free_comm_group.rel_cons_concat479,17905
|
||||
theorem fgh_helper_mulgroup.fgh_helper_mul393,14566
|
||||
definition comm_group_sggroup.comm_group_sg105,3947
|
||||
| resp_appendgroup.free_comm_group.fcg_rel.resp_append439,16420
|
||||
definition fn_of_free_group_homgroup.fn_of_free_group_hom413,15391
|
||||
theorem fcg_mul_assocgroup.free_comm_group.fcg_mul_assoc500,18669
|
||||
theorem product_mul_left_invgroup.product_mul_left_inv246,9271
|
||||
definition comm_group_qggroup.comm_group_qg217,8257
|
||||
definition normal_subgroup_rel_commgroup.normal_subgroup_rel_comm39,1314
|
||||
| cancel1group.free_comm_group.fcg_rel.cancel1436,16290
|
||||
definition fgh_helpergroup.fgh_helper379,14019
|
||||
definition product_onegroup.product_one226,8642
|
||||
mkgroup.normal_subgroup_rel.mk24,627
|
||||
definition generating_relationgroup.generating_relation617,23026
|
||||
| cancel2group.free_group.free_group_rel.cancel2277,10322
|
||||
| rmkgroup.dirsum_rel.rmk644,23910
|
||||
structure no_confusiongroup.subgroup_rel.no_confusion17,410
|
||||
inductive rec_ongroup.free_comm_group.fcg_rel.rec_on434,16208
|
||||
theorem is_normal_subgroup_kernelgroup.is_normal_subgroup_kernel707,25917
|
||||
theorem fgh_helper_respect_relgroup.fgh_helper_respect_rel382,14131
|
||||
abbreviation is_normal_subgroupgroup.is_normal_subgroup31,998
|
||||
| rinclgroup.generating_relation'.rincl612,22730
|
||||
definition free_group_carriergroup.free_group.free_group_carrier287,10767
|
||||
theorem quotient_mul_onegroup.quotient_mul_one187,7357
|
||||
| rtransgroup.free_comm_group.fcg_rel.rtrans441,16545
|
||||
structure Rinvgroup.subgroup_rel.Rinv17,410
|
||||
definition fn_of_free_comm_group_homgroup.fn_of_free_comm_group_hom586,21759
|
||||
mkgroup.subgroup_rel.mk18,442
|
||||
definition gr_onegroup.gr_one619,23155
|
||||
theorem is_normal_subgroup_rev'group.is_normal_subgroup_rev'52,1969
|
||||
structure subgroup_relgroup.subgroup_rel.rec17,410
|
||||
structure Rgroup.normal_subgroup_rel.R23,565
|
||||
inductive fcg_relgroup.free_comm_group.fcg_rel434,16208
|
||||
definition quotient_onegroup.quotient_one161,6480
|
||||
theorem quotient_rel_reflgroup.quotient_rel_refl118,4339
|
||||
theorem product_mul_onegroup.product_mul_one243,9188
|
||||
definition free_comm_group_hom_equiv_fngroup.free_comm_group_hom_equiv_fn590,21903
|
||||
definition subgroup_kernelgroup.subgroup_kernel699,25721
|
||||
| cancel1group.free_group.free_group_rel.cancel1276,10271
|
||||
definition product_mulgroup.product_mul229,8782
|
||||
theorem quotient_rel_resp_mulgroup.quotient_rel_resp_mul140,5543
|
||||
definition free_groupgroup.free_group371,13774
|
||||
theorem is_normal_subgroup'group.is_normal_subgroup'36,1200
|
||||
definition productgroup.product259,9701
|
||||
definition free_group_homgroup.free_group_hom402,14897
|
||||
theorem normal_subgroup_insertgroup.normal_subgroup_insert55,2094
|
||||
theorem quotient_mul_left_invgroup.quotient_mul_left_inv193,7512
|
||||
structure Rmulgroup.subgroup_rel.Rmul17,410
|
||||
theorem quotient_rel_resp_invgroup.quotient_rel_resp_inv131,5061
|
||||
theorem fcg_mul_commgroup.free_comm_group.fcg_mul_comm536,19740
|
||||
definition group_free_comm_groupgroup.group_free_comm_group551,20268
|
||||
inductive cases_ongroup.dirsum_rel.cases_on643,23866
|
||||
structure Ronegroup.normal_subgroup_rel.Rone23,565
|
||||
structure is_normalgroup.normal_subgroup_rel.is_normal23,565
|
||||
abbreviation subgroup_to_relgroup.subgroup_to_rel27,725
|
||||
definition is_reflexive_Rgroup.free_comm_group.is_reflexive_R452,16904
|
||||
structure cases_ongroup.normal_subgroup_rel.cases_on23,565
|
||||
| rflipgroup.free_comm_group.fcg_rel.rflip438,16378
|
||||
definition product_invgroup.product_inv227,8704
|
||||
structure Ronegroup.subgroup_rel.Rone17,410
|
||||
| cancel2group.free_comm_group.fcg_rel.cancel2437,16334
|
||||
inductive free_group_relgroup.free_group.free_group_rel274,10175
|
||||
definition group_sggroup.group_sg98,3680
|
||||
definition subgroup_invgroup.subgroup_inv69,2861
|
||||
theorem rel_respect_reversegroup.free_group.rel_respect_reverse305,11444
|
||||
inductive dirsum_relgroup.dirsum_rel.rec643,23866
|
||||
definition quotient_groupgroup.quotient_group214,8177
|
||||
definition free_group_mulgroup.free_group.free_group_mul319,12069
|
||||
definition dirsum_carriergroup.dirsum_carrier641,23724
|
||||
inductive rec_ongroup.generating_relation'.rec_on611,22688
|
||||
structure destructgroup.normal_subgroup_rel.destruct23,565
|
||||
inductive generating_relation'group.generating_relation'611,22688
|
||||
theorem quotient_mul_commgroup.quotient_mul_comm199,7679
|
||||
theorem kernel_invgroup.kernel_inv690,25493
|
||||
inductive rec_ongroup.free_group.free_group_rel.rec_on274,10175
|
||||
theorem free_group_one_mulgroup.free_group.free_group_one_mul336,12637
|
||||
theorem rel_respect_flipgroup.free_comm_group.rel_respect_flip457,17078
|
||||
inductive free_group_relgroup.free_group.free_group_rel.rec274,10175
|
||||
inductive cases_ongroup.generating_relation'.cases_on611,22688
|
||||
definition fcg_invgroup.free_comm_group.fcg_inv489,18234
|
||||
theorem subgroup_mul_commgroup.subgroup_mul_comm91,3530
|
||||
inductive rec_ongroup.dirsum_rel.rec_on643,23866
|
||||
definition fcg_onegroup.free_comm_group.fcg_one488,18177
|
||||
structure rec_ongroup.subgroup_rel.rec_on17,410
|
||||
theorem subgroup_mul_left_invgroup.subgroup_mul_left_inv88,3442
|
||||
theorem fcg_mul_left_invgroup.free_comm_group.fcg_mul_left_inv521,19267
|
||||
theorem rel_respect_flipgroup.free_group.rel_respect_flip295,11073
|
||||
| rreflgroup.free_group.free_group_rel.rrefl275,10234
|
||||
inductive generating_relation'group.generating_relation'.rec611,22688
|
||||
theorem quotient_one_mulgroup.quotient_one_mul181,7202
|
||||
definition quotient_invgroup.quotient_inv162,6543
|
||||
theorem is_equivalence_quotient_relgroup.is_equivalence_quotient_rel150,6091
|
||||
theorem free_group_mul_onegroup.free_group.free_group_mul_one342,12802
|
||||
theorem is_normal_subgroup_revgroup.is_normal_subgroup_rev45,1563
|
||||
structure no_confusiongroup.normal_subgroup_rel.no_confusion23,565
|
||||
structure subgroup_relgroup.subgroup_rel17,410
|
||||
definition group_free_groupgroup.group_free_group367,13543
|
||||
| ronegroup.generating_relation'.rone615,22950
|
||||
theorem fcg_mul_onegroup.free_comm_group.fcg_mul_one515,19108
|
||||
abbreviation subgroup_respect_invgroup.subgroup_respect_inv30,929
|
||||
definition free_group_hom_equiv_fngroup.free_group_hom_equiv_fn417,15520
|
||||
inductive cases_ongroup.free_comm_group.fcg_rel.cases_on434,16208
|
||||
theorem subgroup_mul_onegroup.subgroup_mul_one85,3366
|
||||
definition comm_productgroup.comm_product265,9929
|
||||
definition subgroup_mulgroup.subgroup_mul71,2957
|
||||
structure cases_ongroup.subgroup_rel.cases_on17,410
|
||||
definition quotient_mulgroup.quotient_mul164,6665
|
||||
|
||||
homotopy/fin.hlean,557
|
||||
definition my_succfin.my_succ30,720
|
||||
inductive is_succis_succ.rec13,236
|
||||
definition has_one_finfin.has_one_fin46,1254
|
||||
protected definition addfin.add40,1035
|
||||
definition has_add_finfin.has_add_fin49,1401
|
||||
definition is_succ_bit0is_succ_bit024,585
|
||||
inductive rec_onis_succ.rec_on13,236
|
||||
inductive is_succis_succ13,236
|
||||
| mkis_succ.mk14,268
|
||||
definition is_succ_add_rightis_succ_add_right18,339
|
||||
inductive cases_onis_succ.cases_on13,236
|
||||
definition has_zero_finfin.has_zero_fin43,1114
|
||||
definition is_succ_add_leftis_succ_add_left21,460
|
||||
|
||||
group_theory/basic.hlean,2779
|
||||
definition to_respect_mulgroup.to_respect_mul94,3090
|
||||
definition structgroup.homomorphism.struct88,2858
|
||||
mkgroup.homomorphism.mk82,2703
|
||||
definition comm_group_Group_of_CommGroupgroup.comm_group_Group_of_CommGroup30,953
|
||||
definition is_homomorphism_idgroup.is_homomorphism_id76,2559
|
||||
theorem to_respect_invgroup.to_respect_inv100,3245
|
||||
definition to_ginvgroup.to_ginv151,5068
|
||||
definition Set_of_Groupgroup.Set_of_Group25,788
|
||||
theorem respect_onegroup.respect_one51,1730
|
||||
definition pointed_Groupgroup.pointed_Group23,631
|
||||
definition precategory_groupgroup.precategory_group183,6085
|
||||
definition Group_of_CommGroupgroup.Group_of_CommGroup27,853
|
||||
structure destructgroup.homomorphism.destruct81,2660
|
||||
structure no_confusiongroup.homomorphism.no_confusion81,2660
|
||||
definition reflgroup.isomorphism.refl158,5270
|
||||
definition is_set_homomorphismgroup.is_set_homomorphism106,3462
|
||||
structure to_homgroup.isomorphism.to_hom140,4744
|
||||
mkgroup.isomorphism.mk141,4777
|
||||
theorem to_respect_onegroup.to_respect_one97,3182
|
||||
structure isomorphismgroup.isomorphism.rec140,4744
|
||||
definition transgroup.isomorphism.trans164,5502
|
||||
definition is_embedding_homomorphismgroup.is_embedding_homomorphism61,2062
|
||||
structure homomorphismgroup.homomorphism81,2660
|
||||
definition pmap_of_homomorphismgroup.pmap_of_homomorphism120,3991
|
||||
definition homomorphism_composegroup.homomorphism_compose131,4395
|
||||
theorem respect_invgroup.respect_inv58,1922
|
||||
definition group_fungroup.group_fun87,2794
|
||||
structure rec_ongroup.homomorphism.rec_on81,2660
|
||||
structure φgroup.homomorphism.φ81,2660
|
||||
definition homomorphism_eqgroup.homomorphism_eq123,4120
|
||||
definition to_is_embedding_homomorphismgroup.to_is_embedding_homomorphism103,3330
|
||||
definition equiv_of_isomorphismgroup.equiv_of_isomorphism148,4976
|
||||
structure no_confusiongroup.isomorphism.no_confusion140,4744
|
||||
definition symmgroup.isomorphism.symm161,5378
|
||||
structure destructgroup.isomorphism.destruct140,4744
|
||||
definition is_homomorphismgroup.is_homomorphism39,1242
|
||||
structure rec_ongroup.isomorphism.rec_on140,4744
|
||||
structure is_equiv_to_homgroup.isomorphism.is_equiv_to_hom140,4744
|
||||
structure isomorphismgroup.isomorphism140,4744
|
||||
definition homomorphism_idgroup.homomorphism_id134,4544
|
||||
structure homomorphismgroup.homomorphism.rec81,2660
|
||||
definition group_pType_of_Groupgroup.group_pType_of_Group34,1108
|
||||
definition respect_mulgroup.respect_mul48,1643
|
||||
definition pType_of_Groupgroup.pType_of_Group24,711
|
||||
structure cases_ongroup.homomorphism.cases_on81,2660
|
||||
definition is_homomorphism_composegroup.is_homomorphism_compose72,2369
|
||||
structure pgroup.homomorphism.p81,2660
|
||||
structure cases_ongroup.isomorphism.cases_on140,4744
|
||||
|
||||
homotopy/join_theorem.hlean,366
|
||||
protected definition introis_conn.intro51,1299
|
||||
definition is_retraction_composeretraction.is_retraction_compose11,231
|
||||
definition is_retraction_compose_equiv_leftretraction.is_retraction_compose_equiv_left27,703
|
||||
theorem is_conn_joinis_conn_join70,1667
|
||||
definition is_retraction_compose_equiv_rightretraction.is_retraction_compose_equiv_right32,871
|
||||
|
||||
homotopy/sec86.hlean,1825
|
||||
definition freudenthal_pequivfreudenthal_pequiv223,8078
|
||||
definition encode'freudenthal.encode'121,4379
|
||||
definition code_merid_inv_ptfreudenthal.code_merid_inv_pt92,3441
|
||||
definition upfreudenthal.up58,2252
|
||||
definition decodefreudenthal.decode174,6391
|
||||
definition decode_north_ptfreudenthal.decode_north_pt115,4165
|
||||
definition decode_coh_gfreudenthal.decode_coh_g148,5307
|
||||
definition psphere_succpsphere_succ47,1992
|
||||
theorem elim_type_merid_invelim_type_merid_inv36,1519
|
||||
definition decode_northfreudenthal.decode_north112,4042
|
||||
theorem decode_cohfreudenthal.decode_coh160,5802
|
||||
definition code_merid_cohfreudenthal.code_merid_coh76,2843
|
||||
definition equiv'freudenthal.equiv'188,6798
|
||||
definition decode_coh_lemfreudenthal.decode_coh_lem156,5625
|
||||
definition freudenthal_equivfreudenthal_equiv229,8371
|
||||
definition is_trunc_codefreudenthal.is_trunc_code103,3823
|
||||
definition code_meridfreudenthal.code_merid61,2360
|
||||
theorem encode_decode_northfreudenthal.encode_decode_north130,4628
|
||||
definition is_equiv_code_meridfreudenthal.is_equiv_code_merid81,3004
|
||||
definition is_conn_truncis_conn_trunc40,1776
|
||||
definition pequiv'freudenthal.pequiv'191,6935
|
||||
definition decode_southfreudenthal.decode_south118,4253
|
||||
definition encodefreudenthal.encode124,4469
|
||||
definition decode_coh_ffreudenthal.decode_coh_f139,4992
|
||||
definition code_merid_β_leftfreudenthal.code_merid_β_left70,2625
|
||||
definition stability_pequivsphere.stability_pequiv236,8573
|
||||
definition code_merid_equivfreudenthal.code_merid_equiv89,3312
|
||||
definition codefreudenthal.code100,3704
|
||||
theorem decode_encodefreudenthal.decode_encode182,6599
|
||||
definition code_merid_β_rightfreudenthal.code_merid_β_right73,2727
|
||||
definition iterated_loop_ptrunc_pequiv_coniterated_loop_ptrunc_pequiv_con23,1032
|
||||
|
||||
homotopy/chain_complex.hlean,5324
|
||||
definition sintsint36,1114
|
||||
structure carriersucc_str.carrier24,757
|
||||
structure mul_left_inv_ptchain_complex.pgroup.mul_left_inv_pt478,19042
|
||||
structure type_chain_complexchain_complex.type_chain_complex88,3028
|
||||
definition transfer_chain_complex2'chain_complex.transfer_chain_complex2'336,12565
|
||||
structure invchain_complex.pgroup.inv478,19042
|
||||
structure no_confusionsucc_str.no_confusion24,757
|
||||
definition cc_to_fnchain_complex.cc_to_fn248,9540
|
||||
definition transfer_chain_complexchain_complex.transfer_chain_complex280,10737
|
||||
definition stratifiedstratified57,1945
|
||||
structure cases_onchain_complex.chain_complex.cases_on239,9213
|
||||
definition is_exact_at_tchain_complex.is_exact_at_t103,3692
|
||||
definition whisker_left_idp_con_eq_assoceq.whisker_left_idp_con_eq_assoc17,554
|
||||
structure pgroupchain_complex.pgroup478,19042
|
||||
definition stratified_succstratified_succ53,1777
|
||||
definition snatsnat34,955
|
||||
definition cast_inv_castchain_complex.cast_inv_cast178,6596
|
||||
definition cast_cast_invchain_complex.cast_cast_inv174,6433
|
||||
definition is_surjective_of_trivialchain_complex.is_surjective_of_trivial516,20301
|
||||
structure succ_strsucc_str.rec24,757
|
||||
structure destructchain_complex.type_chain_complex.destruct88,3028
|
||||
theorem is_exact_at_transferchain_complex.is_exact_at_transfer292,11186
|
||||
structure is_set_carrierchain_complex.pgroup.is_set_carrier478,19042
|
||||
structure to_has_invchain_complex.pgroup.to_has_inv478,19042
|
||||
definition inv_commute1'chain_complex.inv_commute1'162,5796
|
||||
mksucc_str.mk25,778
|
||||
definition is_exact_tchain_complex.is_exact_t106,3821
|
||||
structure cases_onchain_complex.type_chain_complex.cases_on88,3028
|
||||
definition tcc_to_carchain_complex.tcc_to_car96,3299
|
||||
structure succsucc_str.succ24,757
|
||||
structure fnchain_complex.chain_complex.fn239,9213
|
||||
mkchain_complex.chain_complex.mk240,9256
|
||||
structure mul_assocchain_complex.pgroup.mul_assoc478,19042
|
||||
definition is_exact_at_truncchain_complex.is_exact_at_trunc324,12208
|
||||
definition is_embedding_of_trivialchain_complex.is_embedding_of_trivial501,19848
|
||||
definition cc_to_carchain_complex.cc_to_car247,9473
|
||||
definition inv_commute1chain_complex.inv_commute1166,6045
|
||||
definition is_equiv_of_trivialchain_complex.is_equiv_of_trivial524,20541
|
||||
definition is_exact_at_transfer2chain_complex.is_exact_at_transfer2201,7632
|
||||
definition transfer_type_chain_complexchain_complex.transfer_type_chain_complex130,4624
|
||||
structure rec_onchain_complex.pgroup.rec_on478,19042
|
||||
definition fn_cast_eq_cast_fnchain_complex.fn_cast_eq_cast_fn170,6235
|
||||
definition is_exact_atchain_complex.is_exact_at254,9852
|
||||
structure carchain_complex.type_chain_complex.car88,3028
|
||||
definition stratified_typestratified_type44,1365
|
||||
structure cases_onchain_complex.pgroup.cases_on478,19042
|
||||
structure destructchain_complex.pgroup.destruct478,19042
|
||||
definition is_exact_at_transfer2'chain_complex.is_exact_at_transfer2'357,13539
|
||||
mkchain_complex.type_chain_complex.mk89,3076
|
||||
definition trunc_chain_complexchain_complex.trunc_chain_complex312,11842
|
||||
definition is_exactchain_complex.is_exact257,9977
|
||||
definition tcc_is_chain_complexchain_complex.tcc_is_chain_complex98,3453
|
||||
definition sint'sint'37,1193
|
||||
structure is_chain_complexchain_complex.chain_complex.is_chain_complex239,9213
|
||||
definition group_of_pgroupchain_complex.group_of_pgroup483,19228
|
||||
structure chain_complexchain_complex.chain_complex239,9213
|
||||
structure chain_complexchain_complex.chain_complex.rec239,9213
|
||||
definition cc_is_chain_complexchain_complex.cc_is_chain_complex249,9618
|
||||
structure type_chain_complexchain_complex.type_chain_complex.rec88,3028
|
||||
structure no_confusionchain_complex.type_chain_complex.no_confusion88,3028
|
||||
definition snat'snat'35,1034
|
||||
structure destructchain_complex.chain_complex.destruct239,9213
|
||||
structure mul_ptchain_complex.pgroup.mul_pt478,19042
|
||||
structure pgroupchain_complex.pgroup.rec478,19042
|
||||
structure carchain_complex.chain_complex.car239,9213
|
||||
structure fnchain_complex.type_chain_complex.fn88,3028
|
||||
definition Ssucc_str.S30,875
|
||||
structure is_chain_complexchain_complex.type_chain_complex.is_chain_complex88,3028
|
||||
structure mulchain_complex.pgroup.mul478,19042
|
||||
structure cases_onsucc_str.cases_on24,757
|
||||
definition transfer_type_chain_complex2chain_complex.transfer_type_chain_complex2183,6842
|
||||
mkchain_complex.pgroup.mk479,19107
|
||||
definition pgroup_of_groupchain_complex.pgroup_of_group491,19482
|
||||
structure rec_onsucc_str.rec_on24,757
|
||||
definition tcc_to_fnchain_complex.tcc_to_fn97,3372
|
||||
structure rec_onchain_complex.type_chain_complex.rec_on88,3028
|
||||
structure no_confusionchain_complex.pgroup.no_confusion478,19042
|
||||
theorem is_exact_at_t_transferchain_complex.is_exact_at_t_transfer142,5091
|
||||
structure rec_onchain_complex.chain_complex.rec_on239,9213
|
||||
structure succ_strsucc_str24,757
|
||||
definition is_trunc_ptrunctypechain_complex.is_trunc_ptrunctype473,18817
|
||||
structure to_semigroupchain_complex.pgroup.to_semigroup478,19042
|
||||
structure destructsucc_str.destruct24,757
|
||||
definition transport_eq_Fl_idp_lefteq.transport_eq_Fl_idp_left13,386
|
||||
structure no_confusionchain_complex.chain_complex.no_confusion239,9213
|
||||
structure pt_mulchain_complex.pgroup.pt_mul478,19042
|
||||
|
||||
homotopy/spectrum.hlean,5800
|
||||
structure is_spectrumis_spectrum.rec187,9094
|
||||
structure destructgen_spectrum.destruct192,9275
|
||||
definition pequiv_postcomposepointed.pequiv_postcompose137,7133
|
||||
structure no_confusiongen_prespectrum.no_confusion181,8929
|
||||
structure gluegen_prespectrum.glue181,8929
|
||||
structure cases_onspectrum.sp_chain_complex.cases_on386,18262
|
||||
structure no_confusionspectrum.sp_chain_complex.no_confusion386,18262
|
||||
definition pequiv_precomposepointed.pequiv_precompose145,7584
|
||||
definition loop_pmap_commutepointed.loop_pmap_commute73,2970
|
||||
abbreviation mkspectrum.mk203,9684
|
||||
definition psp_of_gen_indexedspectrum.psp_of_gen_indexed248,11436
|
||||
structure shomotopyspectrum.shomotopy317,15315
|
||||
structure shomotopyspectrum.shomotopy.rec317,15315
|
||||
structure destructgen_prespectrum.destruct181,8929
|
||||
structure fnspectrum.sp_chain_complex.fn386,18262
|
||||
definition scc_to_carspectrum.scc_to_car394,18517
|
||||
structure sp_chain_complexspectrum.sp_chain_complex386,18262
|
||||
structure carspectrum.sp_chain_complex.car386,18262
|
||||
protected definition of_gen_indexedspectrum.of_gen_indexed257,11975
|
||||
definition shomotopy_groupspectrum.shomotopy_group356,16961
|
||||
structure cases_onis_spectrum.cases_on187,9094
|
||||
structure cases_ongen_spectrum.cases_on192,9275
|
||||
structure rec_onspectrum.sp_chain_complex.rec_on386,18262
|
||||
mkgen_prespectrum.mk182,8965
|
||||
definition ppcompose_leftpointed.ppcompose_left82,3567
|
||||
structure no_confusionis_spectrum.no_confusion187,9094
|
||||
definition scomposespectrum.scompose299,14044
|
||||
structure to_prespectrumgen_spectrum.to_prespectrum192,9275
|
||||
structure no_confusionspectrum.smap.no_confusion278,13041
|
||||
definition szerospectrum.szero311,14839
|
||||
structure cases_onspectrum.smap.cases_on278,13041
|
||||
structure gen_prespectrumgen_prespectrum.rec181,8929
|
||||
structure no_confusionspectrum.shomotopy.no_confusion317,15315
|
||||
abbreviation spectrumspectrum202,9643
|
||||
structure cases_onspectrum.shomotopy.cases_on317,15315
|
||||
definition scc_is_chain_complexspectrum.scc_is_chain_complex396,18670
|
||||
definition struncspectrum.strunc343,16403
|
||||
structure glue_squarespectrum.smap.glue_square278,13041
|
||||
structure destructis_spectrum.destruct187,9094
|
||||
structure smapspectrum.smap.rec278,13041
|
||||
definition pfiber_loop_spacepointed.pfiber_loop_space110,5185
|
||||
definition pequiv_composepointed.pequiv_compose35,1119
|
||||
definition psuspnspectrum.psuspn330,15866
|
||||
definition pmap_eq_equivpointed.pmap_eq_equiv58,1870
|
||||
structure deloopgen_prespectrum.deloop181,8929
|
||||
structure rec_onspectrum.shomotopy.rec_on317,15315
|
||||
definition transport_fiber_equivpointed.transport_fiber_equiv132,6798
|
||||
definition pcompose_pconstpointed.pcompose_pconst101,4763
|
||||
mkis_spectrum.mk188,9158
|
||||
definition sglue_squarespectrum.sglue_square288,13371
|
||||
definition equiv_ppcompose_leftpointed.equiv_ppcompose_left98,4631
|
||||
definition ap1_pconstpointed.ap1_pconst107,5048
|
||||
definition ppipointed.ppi160,8279
|
||||
structure glue_homotopyspectrum.shomotopy.glue_homotopy317,15315
|
||||
structure rec_ongen_spectrum.rec_on192,9275
|
||||
definition sigma_equiv_sigma_left'sigma.sigma_equiv_sigma_left'20,711
|
||||
definition is_spectrum_of_gen_indexedspectrum.is_spectrum_of_gen_indexed251,11679
|
||||
structure to_funspectrum.smap.to_fun278,13041
|
||||
definition pfiber_equiv_of_phomotopypointed.pfiber_equiv_of_phomotopy121,6291
|
||||
structure destructspectrum.sp_chain_complex.destruct386,18262
|
||||
structure gen_spectrumgen_spectrum.rec192,9275
|
||||
protected definition of_nat_indexedspectrum.of_nat_indexed237,10937
|
||||
protected definition MKspectrum.MK262,12282
|
||||
definition equiv_ppi_rightpointed.equiv_ppi_right166,8498
|
||||
definition scc_to_fnspectrum.scc_to_fn395,18590
|
||||
structure rec_onis_spectrum.rec_on187,9094
|
||||
structure destructspectrum.shomotopy.destruct317,15315
|
||||
structure gen_prespectrumgen_prespectrum181,8929
|
||||
definition is_spectrum_of_nat_indexedspectrum.is_spectrum_of_nat_indexed230,10636
|
||||
protected definition Mkspectrum.Mk270,12731
|
||||
definition equiv_gluespectrum.equiv_glue209,9865
|
||||
mkspectrum.smap.mk279,13094
|
||||
mkgen_spectrum.mk193,9308
|
||||
structure is_equiv_glueis_spectrum.is_equiv_glue187,9094
|
||||
definition gluespectrum.glue207,9753
|
||||
definition sigma_charpointed.phomotopy.sigma_char49,1559
|
||||
structure sp_chain_complexspectrum.sp_chain_complex.rec386,18262
|
||||
structure smapspectrum.smap278,13041
|
||||
mkspectrum.shomotopy.mk318,15388
|
||||
structure gen_spectrumgen_spectrum192,9275
|
||||
definition psp_suspspectrum.psp_susp335,16065
|
||||
structure is_spectrumis_spectrum187,9094
|
||||
structure is_chain_complexspectrum.sp_chain_complex.is_chain_complex386,18262
|
||||
structure cases_ongen_prespectrum.cases_on181,8929
|
||||
definition sfiberspectrum.sfiber382,18050
|
||||
definition of_natspectrum.succ_str.of_nat244,11289
|
||||
definition pathover_eq_Fl'eq.pathover_eq_Fl'28,913
|
||||
structure rec_ongen_prespectrum.rec_on181,8929
|
||||
definition pconst_pcomposepointed.pconst_pcompose104,4907
|
||||
structure no_confusiongen_spectrum.no_confusion192,9275
|
||||
structure rec_onspectrum.smap.rec_on278,13041
|
||||
mkspectrum.sp_chain_complex.mk387,18308
|
||||
definition sp_cotensorspectrum.sp_cotensor366,17352
|
||||
definition pfiber_equiv_of_squarepointed.pfiber_equiv_of_square154,7944
|
||||
structure destructspectrum.smap.destruct278,13041
|
||||
definition loop_ppi_commutepointed.loop_ppi_commute163,8361
|
||||
definition sidspectrum.sid293,13688
|
||||
structure to_phomotopyspectrum.shomotopy.to_phomotopy317,15315
|
||||
structure to_is_spectrumgen_spectrum.to_is_spectrum192,9275
|
||||
definition psp_of_nat_indexedspectrum.psp_of_nat_indexed216,10207
|
||||
definition spispectrum.spi374,17699
|
||||
definition sigma_charpointed.pmap.sigma_char40,1292
|
||||
definition is_equiv_ppcompose_leftpointed.is_equiv_ppcompose_left85,3741
|
||||
|
||||
algebra/module.hlean,3083
|
||||
mkleft_module.mk22,563
|
||||
structure destructleft_module.destruct20,467
|
||||
structure cases_onvector_space.cases_on72,2518
|
||||
proposition smul_zerosmul_zero50,1651
|
||||
structure rec_onleft_module.rec_on20,467
|
||||
structure mul_smulleft_module.mul_smul20,467
|
||||
proposition neg_one_smulneg_one_smul57,1961
|
||||
structure has_scalarhas_scalar13,339
|
||||
structure smul_left_distribvector_space.smul_left_distrib72,2518
|
||||
structure add_zerovector_space.add_zero72,2518
|
||||
structure cases_onhas_scalar.cases_on13,339
|
||||
proposition one_smulone_smul44,1413
|
||||
structure zero_addleft_module.zero_add20,467
|
||||
structure rec_onhas_scalar.rec_on13,339
|
||||
structure smulvector_space.smul72,2518
|
||||
structure addvector_space.add72,2518
|
||||
structure smul_left_distribleft_module.smul_left_distrib20,467
|
||||
structure left_moduleleft_module.rec20,467
|
||||
proposition mul_smulmul_smul41,1310
|
||||
proposition smul_left_distribsmul_left_distrib35,1074
|
||||
structure destructhas_scalar.destruct13,339
|
||||
structure smulleft_module.smul20,467
|
||||
structure negleft_module.neg20,467
|
||||
structure vector_spacevector_space72,2518
|
||||
proposition smul_negsmul_neg60,2054
|
||||
structure one_smulleft_module.one_smul20,467
|
||||
structure is_set_carrierleft_module.is_set_carrier20,467
|
||||
structure left_moduleleft_module20,467
|
||||
structure no_confusionleft_module.no_confusion20,467
|
||||
proposition neg_smulneg_smul54,1811
|
||||
structure no_confusionhas_scalar.no_confusion13,339
|
||||
structure destructvector_space.destruct72,2518
|
||||
structure add_commvector_space.add_comm72,2518
|
||||
structure mkvector_space.mk72,2518
|
||||
structure zero_addvector_space.zero_add72,2518
|
||||
structure zerovector_space.zero72,2518
|
||||
structure add_zeroleft_module.add_zero20,467
|
||||
structure smul_right_distribvector_space.smul_right_distrib72,2518
|
||||
proposition zero_smulzero_smul46,1488
|
||||
structure vector_spacevector_space.rec72,2518
|
||||
structure negvector_space.neg72,2518
|
||||
structure has_scalarhas_scalar.rec13,339
|
||||
structure add_assocvector_space.add_assoc72,2518
|
||||
structure one_smulvector_space.one_smul72,2518
|
||||
structure add_assocleft_module.add_assoc20,467
|
||||
proposition sub_smul_right_distribsub_smul_right_distrib66,2336
|
||||
structure zeroleft_module.zero20,467
|
||||
structure smul_right_distribleft_module.smul_right_distrib20,467
|
||||
proposition smul_right_distribsmul_right_distrib38,1191
|
||||
structure add_commleft_module.add_comm20,467
|
||||
structure is_set_carriervector_space.is_set_carrier72,2518
|
||||
structure add_left_invvector_space.add_left_inv72,2518
|
||||
structure cases_onleft_module.cases_on20,467
|
||||
structure rec_onvector_space.rec_on72,2518
|
||||
structure no_confusionvector_space.no_confusion72,2518
|
||||
proposition smul_sub_left_distribsmul_sub_left_distrib63,2189
|
||||
structure smulhas_scalar.smul13,339
|
||||
structure to_add_comm_groupleft_module.to_add_comm_group20,467
|
||||
structure mul_smulvector_space.mul_smul72,2518
|
||||
structure add_left_invleft_module.add_left_inv20,467
|
||||
mkhas_scalar.mk14,374
|
||||
structure addleft_module.add20,467
|
||||
structure to_left_modulevector_space.to_left_module72,2518
|
||||
structure to_has_scalarleft_module.to_has_scalar20,467
|
|
@ -123,11 +123,12 @@ namespace group
|
|||
(is_normal_subgroup : is_normal R)
|
||||
|
||||
attribute subgroup_rel.R [coercion]
|
||||
abbreviation subgroup_to_rel [unfold 2] := @subgroup_rel.R
|
||||
abbreviation subgroup_has_one [unfold 2] := @subgroup_rel.Rone
|
||||
abbreviation subgroup_respect_mul [unfold 2] := @subgroup_rel.Rmul
|
||||
abbreviation subgroup_respect_inv [unfold 2] := @subgroup_rel.Rinv
|
||||
abbreviation is_normal_subgroup [unfold 2] := @normal_subgroup_rel.is_normal_subgroup
|
||||
abbreviation subgroup_to_rel [parsing_only] [unfold 2] := @subgroup_rel.R
|
||||
abbreviation subgroup_has_one [parsing_only] [unfold 2] := @subgroup_rel.Rone
|
||||
abbreviation subgroup_respect_mul [parsing_only] [unfold 2] := @subgroup_rel.Rmul
|
||||
abbreviation subgroup_respect_inv [parsing_only] [unfold 2] := @subgroup_rel.Rinv
|
||||
abbreviation is_normal_subgroup [parsing_only] [unfold 2] :=
|
||||
@normal_subgroup_rel.is_normal_subgroup
|
||||
|
||||
variables {G G' : Group} (H : subgroup_rel G) (N : normal_subgroup_rel G) {g g' h h' k : G}
|
||||
{A B : CommGroup}
|
||||
|
|
|
@ -6,9 +6,9 @@
|
|||
However, we define it (equivalently) as the pushout of the maps A + B → 2 and A + B → A × B.
|
||||
-/
|
||||
|
||||
import homotopy.circle homotopy.join types.pointed ..move_to_lib
|
||||
import homotopy.circle homotopy.join types.pointed homotopy.cofiber ..move_to_lib
|
||||
|
||||
open bool pointed eq equiv is_equiv sum bool prod unit circle
|
||||
open bool pointed eq equiv is_equiv sum bool prod unit circle cofiber
|
||||
|
||||
namespace smash
|
||||
|
||||
|
@ -181,6 +181,38 @@ namespace smash
|
|||
|
||||
/- To prove: commutative, associative -/
|
||||
|
||||
/- smash A B ≃ pcofiber (pprod_of_pwedge A B) -/
|
||||
|
||||
definition prod_of_pwedge [unfold 3] (v : pwedge A B) : A × B :=
|
||||
begin
|
||||
induction v with a b ,
|
||||
{ exact (a, pt) },
|
||||
{ exact (pt, b) },
|
||||
{ reflexivity }
|
||||
end
|
||||
|
||||
definition pprod_of_pwedge [constructor] : pwedge A B →* A ×* B :=
|
||||
begin
|
||||
fconstructor,
|
||||
{ intro v, induction v with a b ,
|
||||
{ exact (a, pt) },
|
||||
{ exact (pt, b) },
|
||||
{ reflexivity }},
|
||||
{ reflexivity }
|
||||
end
|
||||
|
||||
attribute pcofiber [constructor]
|
||||
definition pcofiber_of_smash (x : smash A B) : pcofiber (@pprod_of_pwedge A B) :=
|
||||
begin
|
||||
induction x,
|
||||
{ exact pushout.inr (a, b) },
|
||||
{ exact pushout.inl ⋆ },
|
||||
{ exact pushout.inl ⋆ },
|
||||
{ symmetry, },
|
||||
{ }
|
||||
end
|
||||
|
||||
|
||||
/- smash A S¹ = susp A -/
|
||||
open susp
|
||||
|
||||
|
|
|
@ -7,7 +7,7 @@ open eq nat int susp pointed pmap sigma is_equiv equiv fiber algebra trunc trunc
|
|||
|
||||
attribute equiv.symm equiv.trans is_equiv.is_equiv_ap fiber.equiv_postcompose
|
||||
fiber.equiv_precompose pequiv.to_pmap pequiv._trans_of_to_pmap ghomotopy_group_succ_in
|
||||
isomorphism_of_eq pmap_bool_equiv sphere_equiv_bool psphere_pequiv_pbool fiber_eq_equiv
|
||||
isomorphism_of_eq pmap_bool_equiv sphere_equiv_bool psphere_pequiv_pbool fiber_eq_equiv int.equiv_succ
|
||||
[constructor]
|
||||
attribute is_equiv.eq_of_fn_eq_fn' [unfold 3]
|
||||
attribute isomorphism._trans_of_to_hom [unfold 3]
|
||||
|
@ -25,6 +25,21 @@ open sigma
|
|||
namespace group
|
||||
open is_trunc
|
||||
|
||||
-- some extra instances for type class inference
|
||||
definition is_homomorphism_comm_homomorphism [instance] {G G' : CommGroup} (φ : G →g G')
|
||||
: @is_homomorphism G G' (@comm_group.to_group _ (CommGroup.struct G))
|
||||
(@comm_group.to_group _ (CommGroup.struct G')) φ :=
|
||||
homomorphism.struct φ
|
||||
|
||||
definition is_homomorphism_comm_homomorphism1 [instance] {G G' : CommGroup} (φ : G →g G')
|
||||
: @is_homomorphism G G' _
|
||||
(@comm_group.to_group _ (CommGroup.struct G')) φ :=
|
||||
homomorphism.struct φ
|
||||
|
||||
definition is_homomorphism_comm_homomorphism2 [instance] {G G' : CommGroup} (φ : G →g G')
|
||||
: @is_homomorphism G G' (@comm_group.to_group _ (CommGroup.struct G)) _ φ :=
|
||||
homomorphism.struct φ
|
||||
|
||||
theorem inv_eq_one {A : Type} [group A] {a : A} (H : a = 1) : a⁻¹ = 1 :=
|
||||
iff.mpr (inv_eq_one_iff_eq_one a) H
|
||||
|
||||
|
|
Loading…
Reference in a new issue