fix homotopy.EM so that it compiles
I'm not sure why we got 'excessive memory consumption' error messages before, but giving extra universe arguments solves the issue
This commit is contained in:
parent
f89edc5403
commit
741e585ca0
1 changed files with 8 additions and 9 deletions
|
@ -1,11 +1,11 @@
|
|||
-- Authors: Floris van Doorn
|
||||
|
||||
import homotopy.EM algebra.category.functor.equivalence types.pointed2 ..pointed_pi ..pointed
|
||||
..move_to_lib .susp ..algebra.exactness
|
||||
..move_to_lib .susp ..algebra.exactness ..univalent_subcategory
|
||||
|
||||
open eq equiv is_equiv algebra group nat pointed EM.ops is_trunc trunc susp function is_conn
|
||||
open eq equiv is_equiv algebra group nat pointed EM.ops is_trunc trunc susp function is_conn nat
|
||||
|
||||
/- TODO: try to fix the speed of this file -/
|
||||
/- TODO: try to fix the compilation time of this file -/
|
||||
|
||||
namespace EM
|
||||
|
||||
|
@ -461,14 +461,13 @@ namespace EM
|
|||
begin intro, apply homomorphism_eq, exact to_homotopy !homotopy_group_functor_pid end
|
||||
begin intros, apply homomorphism_eq, exact to_homotopy !homotopy_group_functor_compose end
|
||||
|
||||
definition ab_homotopy_group_cfunctor (n : ℕ) : cType*[n+2.-1] ⇒ AbGrp :=
|
||||
definition ab_homotopy_group_cfunctor (n : ℕ) : cType*[n.+1] ⇒ AbGrp :=
|
||||
functor.mk
|
||||
(λX, πag[n+2] X)
|
||||
(λX Y f, π→g[n+2] f)
|
||||
begin intro, apply homomorphism_eq, exact to_homotopy !homotopy_group_functor_pid end
|
||||
begin intros, apply homomorphism_eq, exact to_homotopy !homotopy_group_functor_compose end
|
||||
|
||||
|
||||
definition is_equivalence_EM1_cfunctor.{u} : is_equivalence EM1_cfunctor.{u} :=
|
||||
begin
|
||||
fapply is_equivalence.mk,
|
||||
|
@ -493,10 +492,10 @@ namespace EM
|
|||
{ apply eq_of_phomotopy, apply pright_inv }}}
|
||||
end
|
||||
|
||||
definition is_equivalence_EM_cfunctor (n : ℕ) : is_equivalence (EM_cfunctor (n+2)) :=
|
||||
definition is_equivalence_EM_cfunctor.{u} (n : ℕ) : is_equivalence (EM_cfunctor.{u} (n+2)) :=
|
||||
begin
|
||||
fapply is_equivalence.mk,
|
||||
{ exact ab_homotopy_group_cfunctor n },
|
||||
{ exact ab_homotopy_group_cfunctor.{u} n },
|
||||
{ fapply natural_iso.mk,
|
||||
{ fapply nat_trans.mk,
|
||||
{ intro G, exact (ghomotopy_group_EMadd1' G (n+1))⁻¹ᵍ },
|
||||
|
@ -520,8 +519,8 @@ namespace EM
|
|||
definition Grp_equivalence_cptruncconntype'.{u} [constructor] : Grp.{u} ≃c cType*[0] :=
|
||||
equivalence.mk EM1_cfunctor.{u} is_equivalence_EM1_cfunctor.{u}
|
||||
|
||||
definition AbGrp_equivalence_cptruncconntype' [constructor] (n : ℕ) : AbGrp ≃c cType*[n+2.-1] :=
|
||||
equivalence.mk (EM_cfunctor (n+2)) (is_equivalence_EM_cfunctor n)
|
||||
definition AbGrp_equivalence_cptruncconntype'.{u} [constructor] (n : ℕ) : AbGrp.{u} ≃c cType*[n.+1] :=
|
||||
equivalence.mk (EM_cfunctor.{u} (n+2)) (is_equivalence_EM_cfunctor.{u} n)
|
||||
end category
|
||||
|
||||
definition pequiv_EMadd1_of_loopn_pequiv_EM1 {G : AbGroup} {X : Type*} (n : ℕ) (e : Ω[n] X ≃* EM1 G)
|
||||
|
|
Loading…
Reference in a new issue