prove that the cohomology of an Eilenberg-MacLane spectrum satisfies the dimension axiom

This commit is contained in:
Floris van Doorn 2017-02-18 19:01:24 -05:00
parent 81fe7df61f
commit 78512444e8
3 changed files with 47 additions and 34 deletions

View file

@ -1,4 +1,3 @@
import algebra.group_theory ..move_to_lib eq2 import algebra.group_theory ..move_to_lib eq2
open pi pointed algebra group eq equiv is_trunc trunc open pi pointed algebra group eq equiv is_trunc trunc
@ -54,6 +53,14 @@ namespace group
refine whisker_right _ !ap_con_fn ⬝ _, apply con2_con_con2 }} refine whisker_right _ !ap_con_fn ⬝ _, apply con2_con_con2 }}
end end
definition Group_trunc_pmap_isomorphism [constructor] {A A' B : Type*} (f : A' ≃* A) :
Group_trunc_pmap A B ≃g Group_trunc_pmap A' B :=
begin
apply isomorphism.mk (Group_trunc_pmap_homomorphism f),
apply @is_equiv_trunc_functor,
exact to_is_equiv (pequiv_ppcompose_right f),
end
definition Group_trunc_pmap_pid [constructor] {A B : Type*} (f : Group_trunc_pmap A B) : definition Group_trunc_pmap_pid [constructor] {A B : Type*} (f : Group_trunc_pmap A B) :
Group_trunc_pmap_homomorphism (pid A) f = f := Group_trunc_pmap_homomorphism (pid A) f = f :=
begin begin

View file

@ -74,7 +74,7 @@ definition pcompose_pmap_mul {A B C : Type*} (h : B →* C) (f g : A →* Ω B)
Ω→ h ∘* pmap_mul f g ~* pmap_mul (Ω→ h ∘* f) (Ω→ h ∘* g) := Ω→ h ∘* pmap_mul f g ~* pmap_mul (Ω→ h ∘* f) (Ω→ h ∘* g) :=
begin begin
fconstructor, fconstructor,
{ intro p, exact ap1_con2 h (f p) (g p) }, { intro p, exact ap1_con h (f p) (g p) },
{ refine whisker_left _ !con2_con_con2⁻¹ ⬝ _, refine !con.assoc⁻¹ ⬝ _, { refine whisker_left _ !con2_con_con2⁻¹ ⬝ _, refine !con.assoc⁻¹ ⬝ _,
refine whisker_right _ (eq_of_square !ap1_gen_con_natural) ⬝ _, refine whisker_right _ (eq_of_square !ap1_gen_con_natural) ⬝ _,
refine !con.assoc ⬝ whisker_left _ _, apply ap1_gen_con_idp } refine !con.assoc ⬝ whisker_left _ _, apply ap1_gen_con_idp }
@ -84,6 +84,13 @@ definition loop_psusp_intro_pmap_mul {X Y : Type*} (f g : psusp X →* Ω Y) :
loop_psusp_intro (pmap_mul f g) ~* pmap_mul (loop_psusp_intro f) (loop_psusp_intro g) := loop_psusp_intro (pmap_mul f g) ~* pmap_mul (loop_psusp_intro f) (loop_psusp_intro g) :=
pwhisker_right _ !ap1_pmap_mul ⬝* !pmap_mul_pcompose pwhisker_right _ !ap1_pmap_mul ⬝* !pmap_mul_pcompose
definition equiv_glue2 (Y : spectrum) (n : ) : Ω (Ω (Y (n+2))) ≃* Y n :=
begin
refine (!equiv_glue ⬝e* loop_pequiv_loop (!equiv_glue ⬝e* loop_pequiv_loop _))⁻¹ᵉ*,
refine pequiv_of_eq (ap Y _),
exact add.assoc n 1 1
end
namespace cohomology namespace cohomology
definition EM_spectrum /-[constructor]-/ (G : AbGroup) : spectrum := definition EM_spectrum /-[constructor]-/ (G : AbGroup) : spectrum :=
@ -130,6 +137,10 @@ definition cohomology_functor_pconst {X X' : Type*} (Y : spectrum) (n : ) (f
cohomology_functor (pconst X' X) Y n f = 1 := cohomology_functor (pconst X' X) Y n f = 1 :=
!Group_trunc_pmap_pconst !Group_trunc_pmap_pconst
definition cohomology_isomorphism {X X' : Type*} (f : X' ≃* X) (Y : spectrum) (n : ) :
H^n[X, Y] ≃g H^n[X', Y] :=
Group_trunc_pmap_isomorphism f
/- suspension axiom -/ /- suspension axiom -/
definition cohomology_psusp_2 (Y : spectrum) (n : ) : definition cohomology_psusp_2 (Y : spectrum) (n : ) :
@ -193,10 +204,31 @@ definition additive_equiv.{u} {I : Type.{u}} (H : has_choice 0 I) (X : I → Typ
(n : ) : H^n[X, Y] ≃ Πᵍ i, H^n[X i, Y] := (n : ) : H^n[X, Y] ≃ Πᵍ i, H^n[X i, Y] :=
trunc_fwedge_pmap_equiv H X (Ω[2] (Y (n+2))) trunc_fwedge_pmap_equiv H X (Ω[2] (Y (n+2)))
definition additive {I : Type} (H : has_choice 0 I) (X : I → Type*) (Y : spectrum) (n : ) : definition spectrum_additive {I : Type} (H : has_choice 0 I) (X : I → Type*) (Y : spectrum)
is_equiv (additive_hom X Y n) := (n : ) : is_equiv (additive_hom X Y n) :=
is_equiv_of_equiv_of_homotopy (additive_equiv H X Y n) begin intro f, induction f, reflexivity end is_equiv_of_equiv_of_homotopy (additive_equiv H X Y n) begin intro f, induction f, reflexivity end
/- dimension axiom for ordinary cohomology -/
open is_conn trunc_index
theorem EM_dimension' (G : AbGroup) (n : ) (H : n ≠ 0) :
is_contr (ordinary_cohomology pbool G n) :=
begin
apply is_conn_equiv_closed 0 !pmap_pbool_equiv⁻¹ᵉ,
apply is_conn_equiv_closed 0 !equiv_glue2⁻¹ᵉ,
cases n with n n,
{ cases n with n,
{ exfalso, apply H, reflexivity },
{ apply is_conn_of_le, apply zero_le_of_nat n, exact is_conn_EMadd1 G n, }},
{ apply is_trunc_trunc_of_is_trunc, apply @is_contr_loop_of_is_trunc (n+1) (K G 0),
apply is_trunc_of_le _ (zero_le_of_nat n) }
end
theorem EM_dimension (G : AbGroup) (n : ) (H : n ≠ 0) :
is_contr (ordinary_cohomology (plift pbool) G n) :=
@(is_trunc_equiv_closed_rev -2
(equiv_of_isomorphism (cohomology_isomorphism (pequiv_plift pbool) _ _)))
(EM_dimension' G n H)
/- cohomology theory -/ /- cohomology theory -/
structure cohomology_theory.{u} : Type.{u+1} := structure cohomology_theory.{u} : Type.{u+1} :=
@ -224,6 +256,9 @@ cohomology_theory.mk
(λn A, cohomology_psusp A Y n) (λn A, cohomology_psusp A Y n)
(λn A B f, cohomology_psusp_natural f Y n) (λn A B f, cohomology_psusp_natural f Y n)
(λn A B f, cohomology_exact f Y n) (λn A B f, cohomology_exact f Y n)
(λn I A H, additive H A Y n) (λn I A H, spectrum_additive H A Y n)
definition ordinary_cohomology_theory_EM [constructor] (G : AbGroup) : ordinary_theory :=
⦃ordinary_theory, cohomology_theory_spectrum (EM_spectrum G), Hdimension := EM_dimension G ⦄
end cohomology end cohomology

View file

@ -101,34 +101,6 @@ namespace pointed
{ apply is_set.elim } { apply is_set.elim }
end end
definition ap1_gen {A B : Type} (f : A → B) {a a' : A} (p : a = a')
{b b' : B} (q : f a = b) (q' : f a' = b') : b = b' :=
q⁻¹ ⬝ ap f p ⬝ q'
definition ap1_gen_con {A B : Type} (f : A → B) {a₁ a₂ a₃ : A} (p₁ : a₁ = a₂) (p₂ : a₂ = a₃)
{b₁ b₂ b₃ : B} (q₁ : f a₁ = b₁) (q₂ : f a₂ = b₂) (q₃ : f a₃ = b₃) :
ap1_gen f (p₁ ⬝ p₂) q₁ q₃ = ap1_gen f p₁ q₁ q₂ ⬝ ap1_gen f p₂ q₂ q₃ :=
begin induction p₂, induction q₃, induction q₂, reflexivity end
definition ap1_gen_con_natural {A B : Type} (f : A → B) {a₁ a₂ a₃ : A} {p₁ p₁' : a₁ = a₂}
{p₂ p₂' : a₂ = a₃}
{b₁ b₂ b₃ : B} (q₁ : f a₁ = b₁) (q₂ : f a₂ = b₂) (q₃ : f a₃ = b₃)
(r₁ : p₁ = p₁') (r₂ : p₂ = p₂') :
square (ap1_gen_con f p₁ p₂ q₁ q₂ q₃)
(ap1_gen_con f p₁' p₂' q₁ q₂ q₃)
(ap (λp, ap1_gen f p q₁ q₃) (r₁ ◾ r₂))
(ap (λp, ap1_gen f p q₁ q₂) r₁ ◾ ap (λp, ap1_gen f p q₂ q₃) r₂) :=
begin induction r₁, induction r₂, exact vrfl end
definition ap1_gen_con_idp {A B : Type} (f : A → B) {a : A} {b : B} (q : f a = b) :
ap1_gen_con f idp idp q q q ⬝ con.left_inv q ◾ con.left_inv q = con.left_inv q :=
by induction q; reflexivity
-- TODO: replace with ap1_con
definition ap1_con2 {A B : Type*} (f : A →* B) (p q : Ω A) : ap1 f (p ⬝ q) = ap1 f p ⬝ ap1 f q :=
ap1_gen_con f p q (respect_pt f) (respect_pt f) (respect_pt f)
definition ap1_gen_con_left {A B : Type} {a a' : A} {b₀ b₁ b₂ : B} definition ap1_gen_con_left {A B : Type} {a a' : A} {b₀ b₁ b₂ : B}
{f : A → b₀ = b₁} {f' : A → b₁ = b₂} (p : a = a') {q₀ q₁ : b₀ = b₁} {q₀' q₁' : b₁ = b₂} {f : A → b₀ = b₁} {f' : A → b₁ = b₂} (p : a = a') {q₀ q₁ : b₀ = b₁} {q₀' q₁' : b₁ = b₂}
(r₀ : f a = q₀) (r₁ : f a' = q₁) (r₀' : f' a = q₀') (r₁' : f' a' = q₁') : (r₀ : f a = q₀) (r₁ : f a' = q₁) (r₀' : f' a = q₀') (r₁' : f' a' = q₁') :
@ -747,7 +719,6 @@ end is_conn
namespace circle namespace circle
/- /-
Suppose for `f, g : A -> B` I prove a homotopy `H : f ~ g` by induction on the element in `A`. Suppose for `f, g : A -> B` I prove a homotopy `H : f ~ g` by induction on the element in `A`.
And suppose `p : a = a'` is a path constructor in `A`. And suppose `p : a = a'` is a path constructor in `A`.