do the integer arithmetic sorrys
This commit is contained in:
parent
1abb09b062
commit
7a5b8a206d
1 changed files with 22 additions and 5 deletions
|
@ -3,17 +3,34 @@ import .spectrum .EM
|
||||||
namespace int
|
namespace int
|
||||||
|
|
||||||
-- TODO move this
|
-- TODO move this
|
||||||
open trunc_index nat algebra
|
open nat algebra
|
||||||
section
|
section
|
||||||
private definition maxm2_le.lemma₁ {n k : ℕ} : n+(1:int) + -[1+ k] ≤ n :=
|
private definition maxm2_le.lemma₁ {n k : ℕ} : n+(1:int) + -[1+ k] ≤ n :=
|
||||||
le.intro (
|
le.intro (
|
||||||
calc n + 1 + -[1+ k] + k = n + 1 - (k + 1) + k : by reflexivity
|
calc n + 1 + -[1+ k] + k
|
||||||
... = n : sorry) /- TODO FOR SSS -/
|
= n + 1 + (-(k + 1)) + k : by reflexivity
|
||||||
|
... = n + 1 + (-1 - k) + k : by krewrite (neg_add_rev k 1)
|
||||||
|
... = n + 1 + (-1 - k + k) : add.assoc
|
||||||
|
... = n + 1 + (-1 + -k + k) : by reflexivity
|
||||||
|
... = n + 1 + (-1 + (-k + k)) : add.assoc
|
||||||
|
... = n + 1 + (-1 + 0) : add.left_inv
|
||||||
|
... = n + (1 + (-1 + 0)) : add.assoc
|
||||||
|
... = n : int.add_zero)
|
||||||
|
|
||||||
private definition maxm2_le.lemma₂ {n : ℕ} {k : ℤ} : -[1+ n] + 1 + k ≤ k :=
|
private definition maxm2_le.lemma₂ {n : ℕ} {k : ℤ} : -[1+ n] + 1 + k ≤ k :=
|
||||||
le.intro (
|
le.intro (
|
||||||
calc -[1+ n] + 1 + k + n = - (n + 1) + 1 + k + n : by reflexivity
|
calc -[1+ n] + 1 + k + n
|
||||||
... = k : sorry) /- TODO FOR SSS -/
|
= - (n + 1) + 1 + k + n : by reflexivity
|
||||||
|
... = -n - 1 + 1 + k + n : by rewrite (neg_add n 1)
|
||||||
|
... = -n + (-1 + 1) + k + n : by krewrite (int.add_assoc (-n) (-1) 1)
|
||||||
|
... = -n + 0 + k + n : add.left_inv 1
|
||||||
|
... = -n + k + n : int.add_zero
|
||||||
|
... = k + -n + n : int.add_comm
|
||||||
|
... = k + (-n + n) : int.add_assoc
|
||||||
|
... = k + 0 : add.left_inv n
|
||||||
|
... = k : int.add_zero)
|
||||||
|
|
||||||
|
open trunc_index
|
||||||
|
|
||||||
definition maxm2_le (n k : ℤ) : maxm2 (n+1+k) ≤ (maxm1m1 n).+1+2+(maxm1m1 k) :=
|
definition maxm2_le (n k : ℤ) : maxm2 (n+1+k) ≤ (maxm1m1 n).+1+2+(maxm1m1 k) :=
|
||||||
begin
|
begin
|
||||||
|
|
Loading…
Reference in a new issue