image of an abelian group is abelian
This commit is contained in:
parent
699531a74c
commit
7ab6eafc3c
1 changed files with 28 additions and 6 deletions
|
@ -123,12 +123,11 @@ namespace group
|
|||
(is_normal_subgroup : is_normal R)
|
||||
|
||||
attribute subgroup_rel.R [coercion]
|
||||
abbreviation subgroup_to_rel [parsing_only] [unfold 2] := @subgroup_rel.R
|
||||
abbreviation subgroup_has_one [parsing_only] [unfold 2] := @subgroup_rel.Rone
|
||||
abbreviation subgroup_respect_mul [parsing_only] [unfold 2] := @subgroup_rel.Rmul
|
||||
abbreviation subgroup_respect_inv [parsing_only] [unfold 2] := @subgroup_rel.Rinv
|
||||
abbreviation is_normal_subgroup [parsing_only] [unfold 2] :=
|
||||
@normal_subgroup_rel.is_normal_subgroup
|
||||
abbreviation subgroup_to_rel [unfold 2] := @subgroup_rel.R
|
||||
abbreviation subgroup_has_one [unfold 2] := @subgroup_rel.Rone
|
||||
abbreviation subgroup_respect_mul [unfold 2] := @subgroup_rel.Rmul
|
||||
abbreviation subgroup_respect_inv [unfold 2] := @subgroup_rel.Rinv
|
||||
abbreviation is_normal_subgroup [unfold 2] := @normal_subgroup_rel.is_normal_subgroup
|
||||
|
||||
variables {G G' : Group} (H : subgroup_rel G) (N : normal_subgroup_rel G) {g g' h h' k : G}
|
||||
{A B : CommGroup}
|
||||
|
@ -258,6 +257,29 @@ namespace group
|
|||
definition image {G H : Group} (f : G →g H) : Group :=
|
||||
subgroup (image_subgroup f)
|
||||
|
||||
definition CommGroup_of_Group.{u} (G : Group.{u}) (H : Π (g h : G), mul g h = mul h g) : CommGroup.{u} :=
|
||||
begin
|
||||
induction G,
|
||||
induction struct,
|
||||
fapply CommGroup.mk,
|
||||
exact carrier,
|
||||
fapply comm_group.mk,
|
||||
repeat assumption,
|
||||
exact H
|
||||
end
|
||||
|
||||
definition comm_image {G : CommGroup} {H : Group} (f : G →g H) : CommGroup :=
|
||||
CommGroup_of_Group (image f)
|
||||
begin
|
||||
intro g h,
|
||||
induction g with x t, induction h with y s,
|
||||
fapply subtype_eq,
|
||||
induction t with p, induction s with q, induction p with g p, induction q with h q, induction p, induction q,
|
||||
refine (((respect_mul f g h)⁻¹ ⬝ _) ⬝ (respect_mul f h g)),
|
||||
apply (ap f),
|
||||
induction G, induction struct, apply mul_comm
|
||||
end
|
||||
|
||||
definition image_incl {G H : Group} (f : G →g H) : image f →g H :=
|
||||
incl_of_subgroup (image_subgroup f)
|
||||
|
||||
|
|
Loading…
Reference in a new issue