finish sufficient condition when infinity page of spectral sequence is contractible

also refactor convergence a bit
This commit is contained in:
Floris van Doorn 2017-07-02 01:12:55 +01:00
parent f54011335d
commit 7b3d1649fa
3 changed files with 55 additions and 20 deletions

View file

@ -121,4 +121,12 @@ begin
apply is_surjective_compose, apply is_short_exact.is_surj H, apply is_surjective_of_is_equiv }
end
lemma is_exact_of_is_short_exact {A B : Type} {C : Type*}
{f : A → B} {g : B → C} (H : is_short_exact f g) : is_exact f g :=
begin
constructor,
{ exact is_short_exact.im_in_ker H },
{ exact is_short_exact.ker_in_im H }
end
end algebra

View file

@ -421,6 +421,10 @@ end
(λa, to_right_inv (equiv_of_isomorphism eB) _) (λb, to_right_inv (equiv_of_isomorphism eC) _)
(short_exact_mod.h H))
definition is_contr_middle_of_short_exact_mod {A B C : LeftModule R} (H : short_exact_mod A B C)
(HA : is_contr A) (HC : is_contr C) : is_contr B :=
is_contr_middle_of_is_exact (is_exact_of_is_short_exact (short_exact_mod.h H))
end
end
@ -438,6 +442,10 @@ LeftModule.mk A (left_module_int_of_ab_group A)
definition lm_hom_int.mk [constructor] {A B : AbGroup} (φ : A →g B) :
LeftModule_int_of_AbGroup A →lm LeftModule_int_of_AbGroup B :=
lm_homomorphism_of_group_homomorphism φ (to_respect_imul φ)
definition lm_iso_int.mk [constructor] {A B : AbGroup} (φ : A ≃g B) :
LeftModule_int_of_AbGroup A ≃lm LeftModule_int_of_AbGroup B :=
isomorphism.mk (lm_hom_int.mk φ) (group.isomorphism.is_equiv_to_hom φ)
end int
end left_module

View file

@ -456,13 +456,13 @@ namespace left_module
definition Z2 [constructor] : Set := g ×g g
structure converges_to.{u v w} {R : Ring} (E' : g → g → LeftModule.{u v} R)
(Dinf : graded_module.{u 0 w} R g) : Type.{max u (v+1) (w+1)} :=
(Dinf : g → LeftModule.{u w} R) : Type.{max u (v+1) (w+1)} :=
(X : exact_couple.{u 0 v w} R Z2)
(HH : is_bounded X)
(s₀ : g → g)
(p : Π(n : g), is_bounded.B' HH (deg (k X) (n, s₀ n)) = 0)
(e : Π(x : g ×g g), exact_couple.E X x ≃lm E' x.1 x.2)
(s₀ : g)
(p : Π(n : g), is_bounded.B' HH (deg (k X) (n, s₀)) = 0)
(f : Π(n : g), exact_couple.D X (deg (k X) (n, s₀)) ≃lm Dinf n)
(f : Π(n : g), exact_couple.D X (deg (k X) (n, s₀ n)) ≃lm Dinf n)
infix ` ⟹ `:25 := converges_to
@ -473,30 +473,49 @@ namespace left_module
section
open converges_to
parameters {R : Ring} {E' : g → g → LeftModule R} {Dinf : graded_module R g} (c : E' ⟹ Dinf)
parameters {R : Ring} {E' : g → g → LeftModule R} {Dinf : g → LeftModule R} (c : E' ⟹ Dinf)
local abbreviation X := X c
local abbreviation i := i X
local abbreviation HH := HH c
local abbreviation s₀ := s₀ c
local abbreviation Dinfdiag (n : g) (k : ) := Dinfdiag X HH (n, s₀) k
local abbreviation Einfdiag (n : g) (k : ) := Einfdiag X HH (n, s₀) k
local abbreviation Dinfdiag (n : g) (k : ) := Dinfdiag X HH (n, s₀ n) k
local abbreviation Einfdiag (n : g) (k : ) := Einfdiag X HH (n, s₀ n) k
include c
definition converges_to_isomorphism {E'' : g → g → LeftModule R} {Dinf' : graded_module R g}
(e' : Πn s, E' n s ≃lm E'' n s) (f' : Πn, Dinf n ≃lm Dinf' n) : E'' ⟹ Dinf' :=
converges_to.mk X HH s₀ (p c)
begin intro x, induction x with n s, exact e c (n, s) ⬝lm e' n s end
(λn, f c n ⬝lm f' n)
theorem is_contr_converges_to (H : Π(n s : g), is_contr (E' n s)) (n : g) : is_contr (Dinf n) :=
theorem is_contr_converges_to_precise (n : g)
(H : Π(n : g) (l : ), is_contr (E' ((deg i)^[l] (n, s₀ n)).1 ((deg i)^[l] (n, s₀ n)).2)) :
is_contr (Dinf n) :=
begin
assert H2 : Π(m : g) (k : ), is_contr (Einfdiag m k),
{ intro m k, apply is_contr_E, exact is_trunc_equiv_closed_rev -2 (equiv_of_isomorphism (e c _)) },
assert H3 : Π(m : g), is_contr (Dinfdiag m 0),
{ intro m, fapply nat.rec_down (λk, is_contr (Dinfdiag m k)),
{ exact is_bounded.B HH (deg (k X) (m, s₀)) },
assert H2 : Π(l : ), is_contr (Einfdiag n l),
{ intro l, apply is_contr_E,
refine @(is_trunc_equiv_closed_rev -2 (equiv_of_isomorphism (e c _))) (H n l) },
assert H3 : is_contr (Dinfdiag n 0),
{ fapply nat.rec_down (λk, is_contr (Dinfdiag n k)),
{ exact is_bounded.B HH (deg (k X) (n, s₀ n)) },
{ apply Dinfdiag_stable, reflexivity },
{ intro k H, exact sorry /-note zz := is_contr_middle_of_is_exact (short_exact_mod_infpage k)-/ }},
refine @is_trunc_equiv_closed _ _ _ _ (H3 n),
apply equiv_of_isomorphism,
exact Dinfdiag0 X HH (n, s₀) (p c n) ⬝lm f c n
{ intro l H,
exact is_contr_middle_of_short_exact_mod (short_exact_mod_infpage X HH (n, s₀ n) l)
(H2 l) H }},
refine @is_trunc_equiv_closed _ _ _ _ H3,
exact equiv_of_isomorphism (Dinfdiag0 X HH (n, s₀ n) (p c n) ⬝lm f c n)
end
theorem is_contr_converges_to (n : g) (H : Π(n s : g), is_contr (E' n s)) : is_contr (Dinf n) :=
is_contr_converges_to_precise n (λn s, !H)
end
variables {E' : g → g → AbGroup} {Dinf : g → AbGroup} (c : E' ⟹ᵍ Dinf)
definition converges_to_g_isomorphism {E'' : g → g → AbGroup} {Dinf' : g → AbGroup}
(e' : Πn s, E' n s ≃g E'' n s) (f' : Πn, Dinf n ≃g Dinf' n) : E'' ⟹ᵍ Dinf' :=
converges_to_isomorphism c (λn s, lm_iso_int.mk (e' n s)) (λn, lm_iso_int.mk (f' n))
end left_module
open left_module
namespace pointed
@ -702,9 +721,9 @@ namespace spectrum
fapply converges_to.mk,
{ exact exact_couple_sequence },
{ exact is_bounded_sequence },
{ intros, reflexivity },
{ exact ub },
{ intro n, exact ub },
{ intro n, change max0 (ub - ub) = 0, exact ap max0 (sub_self ub) },
{ intro ns, reflexivity },
{ intro n, reflexivity }
end