Show that the Eilenberg-MacLane-space-functor induces an equivalence of categories
This commit is contained in:
parent
43f5112c86
commit
7f6752e14f
6 changed files with 1217 additions and 42 deletions
|
@ -40,7 +40,7 @@ namespace group
|
|||
definition full_subgroup.{u} (G : Group.{u}) : subgroup_rel.{u 0} G :=
|
||||
begin
|
||||
fapply subgroup_rel.mk,
|
||||
{ intro g, fapply trunctype.mk, exact unit, exact _}, -- instead of the unit type, we take g = g, because the unit type is in Type₀ and not in Type.{u}
|
||||
{ intro g, fapply trunctype.mk, exact unit, exact _ },
|
||||
{ esimp, constructor },
|
||||
{ intros g h p q, esimp, constructor },
|
||||
{ intros g p, esimp, constructor }
|
||||
|
|
|
@ -419,7 +419,7 @@ namespace seq_colim
|
|||
definition decode [unfold 4] (y : seq_colim g) (c : code y) : ι g x = y :=
|
||||
begin
|
||||
induction y,
|
||||
{ esimp at c, exact sorry},
|
||||
{ esimp at c, exact sorry },
|
||||
{ exact sorry }
|
||||
end
|
||||
|
||||
|
|
500
homotopy/EM.hlean
Normal file
500
homotopy/EM.hlean
Normal file
|
@ -0,0 +1,500 @@
|
|||
-- Authors: Floris van Doorn
|
||||
|
||||
import homotopy.EM ..move_to_lib algebra.category.functor.equivalence ..pointed_pi
|
||||
|
||||
open eq equiv is_equiv algebra group nat pointed EM.ops is_trunc trunc susp function is_conn
|
||||
|
||||
namespace EM
|
||||
|
||||
definition EMadd1_functor_succ [unfold_full] {G H : AbGroup} (φ : G →g H) (n : ℕ) :
|
||||
EMadd1_functor φ (succ n) ~* ptrunc_functor (n+2) (psusp_functor (EMadd1_functor φ n)) :=
|
||||
by reflexivity
|
||||
|
||||
definition EM1_functor_gid (G : Group) : EM1_functor (gid G) ~* !pid :=
|
||||
begin
|
||||
fapply phomotopy.mk,
|
||||
{ intro x, induction x,
|
||||
{ reflexivity },
|
||||
{ apply eq_pathover_id_right, apply hdeg_square, apply elim_pth, },
|
||||
{ apply @is_prop.elim, apply is_trunc_pathover }},
|
||||
{ reflexivity },
|
||||
end
|
||||
|
||||
definition EMadd1_functor_gid (G : AbGroup) (n : ℕ) : EMadd1_functor (gid G) n ~* !pid :=
|
||||
begin
|
||||
induction n with n p,
|
||||
{ apply EM1_functor_gid },
|
||||
{ refine !EMadd1_functor_succ ⬝* _,
|
||||
refine ptrunc_functor_phomotopy _ (psusp_functor_phomotopy p ⬝* !psusp_functor_pid) ⬝* _,
|
||||
apply ptrunc_functor_pid }
|
||||
end
|
||||
|
||||
definition EM_functor_gid (G : AbGroup) (n : ℕ) : EM_functor (gid G) n ~* !pid :=
|
||||
begin
|
||||
cases n with n,
|
||||
{ apply pmap_of_homomorphism_gid },
|
||||
{ apply EMadd1_functor_gid }
|
||||
end
|
||||
|
||||
definition EM1_functor_gcompose {G H K : Group} (ψ : H →g K) (φ : G →g H) :
|
||||
EM1_functor (ψ ∘g φ) ~* EM1_functor ψ ∘* EM1_functor φ :=
|
||||
begin
|
||||
fapply phomotopy.mk,
|
||||
{ intro x, induction x,
|
||||
{ reflexivity },
|
||||
{ apply eq_pathover, apply hdeg_square, esimp,
|
||||
refine !elim_pth ⬝ _ ⬝ (ap_compose (EM1_functor ψ) _ _)⁻¹,
|
||||
refine _ ⬝ ap02 _ !elim_pth⁻¹, exact !elim_pth⁻¹ },
|
||||
{ apply @is_prop.elim, apply is_trunc_pathover }},
|
||||
{ reflexivity },
|
||||
end
|
||||
|
||||
definition EMadd1_functor_gcompose {G H K : AbGroup} (ψ : H →g K) (φ : G →g H) (n : ℕ) :
|
||||
EMadd1_functor (ψ ∘g φ) n ~* EMadd1_functor ψ n ∘* EMadd1_functor φ n :=
|
||||
begin
|
||||
induction n with n p,
|
||||
{ apply EM1_functor_gcompose },
|
||||
{ refine !EMadd1_functor_succ ⬝* _,
|
||||
refine ptrunc_functor_phomotopy _ (psusp_functor_phomotopy p ⬝* !psusp_functor_pcompose) ⬝* _,
|
||||
apply ptrunc_functor_pcompose }
|
||||
end
|
||||
|
||||
definition EM_functor_gcompose {G H K : AbGroup} (ψ : H →g K) (φ : G →g H) (n : ℕ) :
|
||||
EM_functor (ψ ∘g φ) n ~* EM_functor ψ n ∘* EM_functor φ n :=
|
||||
begin
|
||||
cases n with n,
|
||||
{ apply pmap_of_homomorphism_gcompose },
|
||||
{ apply EMadd1_functor_gcompose }
|
||||
end
|
||||
|
||||
definition EM1_functor_phomotopy {G H : Group} {φ ψ : G →g H} (p : φ ~ ψ) :
|
||||
EM1_functor φ ~* EM1_functor ψ :=
|
||||
begin
|
||||
fapply phomotopy.mk,
|
||||
{ intro x, induction x,
|
||||
{ reflexivity },
|
||||
{ apply eq_pathover, apply hdeg_square, esimp,
|
||||
refine !elim_pth ⬝ _ ⬝ !elim_pth⁻¹, exact ap pth (p g) },
|
||||
{ apply @is_prop.elim, apply is_trunc_pathover }},
|
||||
{ reflexivity },
|
||||
end
|
||||
|
||||
definition EMadd1_functor_phomotopy {G H : AbGroup} {φ ψ : G →g H} (p : φ ~ ψ) (n : ℕ) :
|
||||
EMadd1_functor φ n ~* EMadd1_functor ψ n :=
|
||||
begin
|
||||
induction n with n q,
|
||||
{ exact EM1_functor_phomotopy p },
|
||||
{ exact ptrunc_functor_phomotopy _ (psusp_functor_phomotopy q) }
|
||||
end
|
||||
|
||||
definition EM_functor_phomotopy {G H : AbGroup} {φ ψ : G →g H} (p : φ ~ ψ) (n : ℕ) :
|
||||
EM_functor φ n ~* EM_functor ψ n :=
|
||||
begin
|
||||
cases n with n,
|
||||
{ exact pmap_of_homomorphism_phomotopy p },
|
||||
{ exact EMadd1_functor_phomotopy p n }
|
||||
end
|
||||
|
||||
definition EM_equiv_EM [constructor] {G H : AbGroup} (φ : G ≃g H) (n : ℕ) : K G n ≃* K H n :=
|
||||
begin
|
||||
fapply pequiv.MK,
|
||||
{ exact EM_functor φ n },
|
||||
{ exact EM_functor φ⁻¹ᵍ n },
|
||||
{ intro x, refine (EM_functor_gcompose φ⁻¹ᵍ φ n)⁻¹* x ⬝ _,
|
||||
refine _ ⬝ EM_functor_gid G n x,
|
||||
refine EM_functor_phomotopy _ n x,
|
||||
rexact left_inv φ },
|
||||
{ intro x, refine (EM_functor_gcompose φ φ⁻¹ᵍ n)⁻¹* x ⬝ _,
|
||||
refine _ ⬝ EM_functor_gid H n x,
|
||||
refine EM_functor_phomotopy _ n x,
|
||||
rexact right_inv φ }
|
||||
end
|
||||
|
||||
definition is_equiv_EM_functor [constructor] {G H : AbGroup} (φ : G →g H) [H2 : is_equiv φ]
|
||||
(n : ℕ) : is_equiv (EM_functor φ n) :=
|
||||
to_is_equiv (EM_equiv_EM (isomorphism.mk φ H2) n)
|
||||
|
||||
definition fundamental_group_EM1' (G : Group) : G ≃g π₁ (EM1 G) :=
|
||||
(fundamental_group_EM1 G)⁻¹ᵍ
|
||||
|
||||
definition ghomotopy_group_EMadd1' (G : AbGroup) (n : ℕ) : G ≃g πg[n+1] (EMadd1 G n) :=
|
||||
begin
|
||||
change G ≃g π₁ (Ω[n] (EMadd1 G n)),
|
||||
refine _ ⬝g homotopy_group_isomorphism_of_pequiv 0 (loopn_EMadd1_pequiv_EM1 G n),
|
||||
apply fundamental_group_EM1'
|
||||
end
|
||||
|
||||
definition homotopy_group_functor_EM1_functor {G H : Group} (φ : G →g H) :
|
||||
π→g[1] (EM1_functor φ) ∘ fundamental_group_EM1' G ~ fundamental_group_EM1' H ∘ φ :=
|
||||
begin
|
||||
intro g, apply ap tr, exact !idp_con ⬝ !elim_pth,
|
||||
end
|
||||
|
||||
section
|
||||
|
||||
definition ghomotopy_group_EMadd1'_0 (G : AbGroup) :
|
||||
ghomotopy_group_EMadd1' G 0 ~ fundamental_group_EM1' G :=
|
||||
begin
|
||||
refine _ ⬝hty id_compose _,
|
||||
unfold [ghomotopy_group_EMadd1'],
|
||||
apply hwhisker_right (fundamental_group_EM1' G),
|
||||
refine _ ⬝hty trunc_functor_id _ _,
|
||||
exact trunc_functor_homotopy _ ap1_pid,
|
||||
end
|
||||
|
||||
definition loopn_EMadd1_pequiv_EM1_succ (G : AbGroup) (n : ℕ) :
|
||||
loopn_EMadd1_pequiv_EM1 G (succ n) ~* (loopn_succ_in (EMadd1 G (succ n)) n)⁻¹ᵉ* ∘*
|
||||
Ω→[n] (loop_EMadd1 G n) ∘* loopn_EMadd1_pequiv_EM1 G n :=
|
||||
by reflexivity
|
||||
|
||||
-- definition is_trunc_EMadd1' [instance] (G : AbGroup) (n : ℕ) : is_trunc (succ n) (EMadd1 G n) :=
|
||||
-- is_trunc_EMadd1 G n
|
||||
|
||||
definition loop_EMadd1_succ (G : AbGroup) (n : ℕ) :
|
||||
loop_EMadd1 G (n+1) ~* (loop_ptrunc_pequiv (n+1+1) (psusp (EMadd1 G (n+1))))⁻¹ᵉ* ∘*
|
||||
freudenthal_pequiv (EMadd1 G (n+1)) (add_mul_le_mul_add n 1 1) ∘*
|
||||
(ptrunc_pequiv (n+1+1) (EMadd1 G (n+1)))⁻¹ᵉ* :=
|
||||
by reflexivity
|
||||
|
||||
definition ap1_EMadd1_natural {G H : AbGroup} (φ : G →g H) (n : ℕ) :
|
||||
Ω→ (EMadd1_functor φ (succ n)) ∘* loop_EMadd1 G n ~* loop_EMadd1 H n ∘* EMadd1_functor φ n :=
|
||||
begin
|
||||
refine pwhisker_right _ (ap1_phomotopy !EMadd1_functor_succ) ⬝* _,
|
||||
induction n with n IH,
|
||||
{ refine pwhisker_left _ !hopf.to_pmap_delooping_pinv ⬝* _ ⬝*
|
||||
pwhisker_right _ !hopf.to_pmap_delooping_pinv⁻¹*,
|
||||
refine !loop_psusp_unit_natural⁻¹* ⬝h* _,
|
||||
apply ap1_psquare,
|
||||
apply ptr_natural },
|
||||
{ refine pwhisker_left _ !loop_EMadd1_succ ⬝* _ ⬝* pwhisker_right _ !loop_EMadd1_succ⁻¹*,
|
||||
refine _ ⬝h* !ap1_ptrunc_functor,
|
||||
refine (@(ptrunc_pequiv_natural (n+1+1) _) _ _)⁻¹ʰ* ⬝h* _,
|
||||
refine pwhisker_left _ !to_pmap_freudenthal_pequiv ⬝* _ ⬝*
|
||||
pwhisker_right _ !to_pmap_freudenthal_pequiv⁻¹*,
|
||||
apply ptrunc_functor_psquare,
|
||||
exact !loop_psusp_unit_natural⁻¹* }
|
||||
end
|
||||
|
||||
definition apn_EMadd1_pequiv_EM1_natural {G H : AbGroup} (φ : G →g H) (n : ℕ) :
|
||||
Ω→[n] (EMadd1_functor φ n) ∘* loopn_EMadd1_pequiv_EM1 G n ~*
|
||||
loopn_EMadd1_pequiv_EM1 H n ∘* EM1_functor φ :=
|
||||
begin
|
||||
induction n with n IH,
|
||||
{ reflexivity },
|
||||
{ refine pwhisker_left _ !loopn_EMadd1_pequiv_EM1_succ ⬝* _,
|
||||
refine _ ⬝* pwhisker_right _ !loopn_EMadd1_pequiv_EM1_succ⁻¹*,
|
||||
refine _ ⬝h* !loopn_succ_in_inv_natural,
|
||||
exact IH ⬝h* (apn_psquare n !ap1_EMadd1_natural) }
|
||||
end
|
||||
|
||||
definition homotopy_group_functor_EMadd1_functor {G H : AbGroup} (φ : G →g H) (n : ℕ) :
|
||||
π→g[n+1] (EMadd1_functor φ n) ∘ ghomotopy_group_EMadd1' G n ~
|
||||
ghomotopy_group_EMadd1' H n ∘ φ :=
|
||||
begin
|
||||
refine hwhisker_left _ (to_fun_isomorphism_trans _ _) ⬝hty _ ⬝hty
|
||||
hwhisker_right _ (to_fun_isomorphism_trans _ _)⁻¹ʰᵗʸ,
|
||||
refine htyhcompose _ (homotopy_group_homomorphism_psquare 1 (apn_EMadd1_pequiv_EM1_natural φ n)),
|
||||
apply homotopy_group_functor_EM1_functor
|
||||
end
|
||||
|
||||
definition homotopy_group_functor_EMadd1_functor' {G H : AbGroup} (φ : G →g H) (n : ℕ) :
|
||||
φ ∘ (ghomotopy_group_EMadd1' G n)⁻¹ᵍ ~
|
||||
(ghomotopy_group_EMadd1' H n)⁻¹ᵍ ∘ π→g[n+1] (EMadd1_functor φ n) :=
|
||||
htyhinverse (homotopy_group_functor_EMadd1_functor φ n)
|
||||
|
||||
definition EM1_pmap_natural {G H : Group} {X Y : Type*} (f : X →* Y) (eX : G → Ω X)
|
||||
(eY : H → Ω Y) (rX : Πg h, eX (g * h) = eX g ⬝ eX h) (rY : Πg h, eY (g * h) = eY g ⬝ eY h)
|
||||
[H1 : is_conn 0 X] [H2 : is_trunc 1 X] [is_conn 0 Y] [is_trunc 1 Y]
|
||||
(φ : G →g H) (p : Ω→ f ∘ eX ~ eY ∘ φ) :
|
||||
f ∘* EM1_pmap eX rX ~* EM1_pmap eY rY ∘* EM1_functor φ :=
|
||||
begin
|
||||
fapply phomotopy.mk,
|
||||
{ intro x, induction x using EM.set_rec,
|
||||
{ exact respect_pt f },
|
||||
{ apply eq_pathover,
|
||||
refine ap_compose f _ _ ⬝ph _ ⬝hp (ap_compose (EM1_pmap eY rY) _ _)⁻¹,
|
||||
refine ap02 _ !elim_pth ⬝ph _ ⬝hp ap02 _ !elim_pth⁻¹,
|
||||
refine _ ⬝hp !elim_pth⁻¹, apply transpose, exact square_of_eq_bot (p g) }},
|
||||
{ exact !idp_con⁻¹ }
|
||||
end
|
||||
|
||||
definition EM1_pequiv'_natural {G H : Group} {X Y : Type*} (f : X →* Y) (eX : G ≃* Ω X)
|
||||
(eY : H ≃* Ω Y) (rX : Πg h, eX (g * h) = eX g ⬝ eX h) (rY : Πg h, eY (g * h) = eY g ⬝ eY h)
|
||||
[H1 : is_conn 0 X] [H2 : is_trunc 1 X] [is_conn 0 Y] [is_trunc 1 Y]
|
||||
(φ : G →g H) (p : Ω→ f ∘ eX ~ eY ∘ φ) :
|
||||
f ∘* EM1_pequiv' eX rX ~* EM1_pequiv' eY rY ∘* EM1_functor φ :=
|
||||
EM1_pmap_natural f eX eY rX rY φ p
|
||||
|
||||
definition EM1_pequiv_natural {G H : Group} {X Y : Type*} (f : X →* Y) (eX : G ≃g π₁ X)
|
||||
(eY : H ≃g π₁ Y) [H1 : is_conn 0 X] [H2 : is_trunc 1 X] [is_conn 0 Y] [is_trunc 1 Y]
|
||||
(φ : G →g H) (p : π→g[1] f ∘ eX ~ eY ∘ φ) :
|
||||
f ∘* EM1_pequiv eX ~* EM1_pequiv eY ∘* EM1_functor φ :=
|
||||
EM1_pequiv'_natural f _ _ _ _ φ
|
||||
begin
|
||||
assert p' : ptrunc_functor 0 (Ω→ f) ∘* pequiv_of_isomorphism eX ~*
|
||||
pequiv_of_isomorphism eY ∘* pmap_of_homomorphism φ, exact phomotopy_of_homotopy p,
|
||||
exact phcompose p' (ptrunc_pequiv_natural 0 (Ω→ f)),
|
||||
end
|
||||
|
||||
definition EM1_pequiv_type_natural {X Y : Type*} (f : X →* Y) [H1 : is_conn 0 X] [H2 : is_trunc 1 X]
|
||||
[H3 : is_conn 0 Y] [H4 : is_trunc 1 Y] :
|
||||
f ∘* EM1_pequiv_type X ~* EM1_pequiv_type Y ∘* EM1_functor (π→g[1] f) :=
|
||||
begin refine EM1_pequiv_natural f _ _ _ _, reflexivity end
|
||||
|
||||
definition EM_up_natural {G H : AbGroup} (φ : G →g H) {X Y : Type*} (f : X →* Y) {n : ℕ}
|
||||
(eX : Ω[succ (succ n)] X ≃* G) (eY : Ω[succ (succ n)] Y ≃* H) (p : φ ∘ eX ~ eY ∘ Ω→[succ (succ n)] f)
|
||||
: φ ∘ EM_up eX ~ EM_up eY ∘ Ω→[succ n] (Ω→ f) :=
|
||||
begin
|
||||
refine htyhcompose _ p,
|
||||
exact to_homotopy (phinverse (loopn_succ_in_natural (succ n) f)⁻¹*)
|
||||
end
|
||||
|
||||
definition EMadd1_pmap_natural {G H : AbGroup} {X Y : Type*} (f : X →* Y) (n : ℕ) (eX : Ω[succ n] X ≃* G)
|
||||
(eY : Ω[succ n] Y ≃* H) (rX : Πp q, eX (p ⬝ q) = eX p * eX q) (rY : Πp q, eY (p ⬝ q) = eY p * eY q)
|
||||
[H1 : is_conn n X] [H2 : is_trunc (n.+1) X] [H3 : is_conn n Y] [H4 : is_trunc (n.+1) Y]
|
||||
(φ : G →g H) (p : φ ∘ eX ~ eY ∘ Ω→[succ n] f) :
|
||||
f ∘* EMadd1_pmap n eX rX ~* EMadd1_pmap n eY rY ∘* EMadd1_functor φ n :=
|
||||
begin
|
||||
revert X Y f eX eY rX rY H1 H2 H3 H4 p, induction n with n IH: intros,
|
||||
{ apply EM1_pmap_natural, exact @htyhinverse _ _ _ _ eX eY _ _ p },
|
||||
{ do 2 rewrite [EMadd1_pmap_succ], refine _ ⬝* pwhisker_left _ !EMadd1_functor_succ⁻¹*,
|
||||
refine (ptrunc_elim_pcompose ((succ n).+1) _ _)⁻¹* ⬝* _ ⬝*
|
||||
(ptrunc_elim_ptrunc_functor ((succ n).+1) _ _)⁻¹*,
|
||||
apply ptrunc_elim_phomotopy,
|
||||
refine _ ⬝* !psusp_elim_psusp_functor⁻¹*,
|
||||
refine _ ⬝* psusp_elim_phomotopy (IH _ _ _ _ _ (is_homomorphism_EM_up eX rX) _ (@is_conn_loop _ _ H1)
|
||||
(@is_trunc_loop _ _ H2) _ _ (EM_up_natural φ f eX eY p)),
|
||||
apply psusp_elim_natural }
|
||||
end
|
||||
|
||||
definition EMadd1_pequiv'_natural {G H : AbGroup} {X Y : Type*} (f : X →* Y) (n : ℕ) (eX : Ω[succ n] X ≃* G)
|
||||
(eY : Ω[succ n] Y ≃* H) (rX : Πp q, eX (p ⬝ q) = eX p * eX q) (rY : Πp q, eY (p ⬝ q) = eY p * eY q)
|
||||
[H1 : is_conn n X] [H2 : is_trunc (n.+1) X] [is_conn n Y] [is_trunc (n.+1) Y]
|
||||
(φ : G →g H) (p : φ ∘ eX ~ eY ∘ Ω→[succ n] f) :
|
||||
f ∘* EMadd1_pequiv' n eX rX ~* EMadd1_pequiv' n eY rY ∘* EMadd1_functor φ n :=
|
||||
begin rexact EMadd1_pmap_natural f n eX eY rX rY φ p end
|
||||
|
||||
definition EMadd1_pequiv_natural_local_instance {X : Type*} (n : ℕ) [H : is_trunc (n.+1) X] :
|
||||
is_set (Ω[succ n] X) :=
|
||||
@(is_set_loopn (succ n) X) H
|
||||
local attribute EMadd1_pequiv_natural_local_instance [instance]
|
||||
|
||||
definition EMadd1_pequiv_natural {G H : AbGroup} {X Y : Type*} (f : X →* Y) (n : ℕ) (eX : πg[n+1] X ≃g G)
|
||||
(eY : πg[n+1] Y ≃g H) [H1 : is_conn n X] [H2 : is_trunc (n.+1) X] [H3 : is_conn n Y]
|
||||
[H4 : is_trunc (n.+1) Y] (φ : G →g H) (p : φ ∘ eX ~ eY ∘ π→g[n+1] f) :
|
||||
f ∘* EMadd1_pequiv n eX ~* EMadd1_pequiv n eY ∘* EMadd1_functor φ n :=
|
||||
EMadd1_pequiv'_natural f n
|
||||
((ptrunc_pequiv 0 (Ω[succ n] X))⁻¹ᵉ* ⬝e* pequiv_of_isomorphism eX)
|
||||
((ptrunc_pequiv 0 (Ω[succ n] Y))⁻¹ᵉ* ⬝e* pequiv_of_isomorphism eY)
|
||||
_ _ φ (htyhcompose (to_homotopy (phinverse (ptrunc_pequiv_natural 0 (Ω→[succ n] f)))) p)
|
||||
|
||||
definition EMadd1_pequiv_succ_natural {G H : AbGroup} {X Y : Type*} (f : X →* Y) (n : ℕ)
|
||||
(eX : πag[n+2] X ≃g G) (eY : πag[n+2] Y ≃g H) [is_conn (n.+1) X] [is_trunc (n.+2) X]
|
||||
[is_conn (n.+1) Y] [is_trunc (n.+2) Y] (φ : G →g H) (p : φ ∘ eX ~ eY ∘ π→g[n+2] f) :
|
||||
f ∘* EMadd1_pequiv_succ n eX ~* EMadd1_pequiv_succ n eY ∘* EMadd1_functor φ (n+1) :=
|
||||
@(EMadd1_pequiv_natural f (succ n) eX eY) _ _ _ _ φ p
|
||||
|
||||
definition EMadd1_pequiv_type_natural {X Y : Type*} (f : X →* Y) (n : ℕ)
|
||||
[H1 : is_conn (n+1) X] [H2 : is_trunc (n+1+1) X] [H3 : is_conn (n+1) Y] [H4 : is_trunc (n+1+1) Y] :
|
||||
f ∘* EMadd1_pequiv_type X n ~* EMadd1_pequiv_type Y n ∘* EMadd1_functor (π→g[n+2] f) (succ n) :=
|
||||
EMadd1_pequiv_succ_natural f n !isomorphism.refl !isomorphism.refl (π→g[n+2] f)
|
||||
proof λa, idp qed
|
||||
|
||||
-- definition EM1_functor_equiv' (X Y : Type*) [H1 : is_conn 0 X] [H2 : is_trunc 1 X]
|
||||
-- [H3 : is_conn 0 Y] [H4 : is_trunc 1 Y] : (X →* Y) ≃ (π₁ X →g π₁ Y) :=
|
||||
-- begin
|
||||
-- fapply equiv.MK,
|
||||
-- { intro f, exact π→g[1] f },
|
||||
-- { intro φ, exact EM1_pequiv_type Y ∘* EM1_functor φ ∘* (EM1_pequiv_type X)⁻¹ᵉ* },
|
||||
-- { intro φ, apply homomorphism_eq,
|
||||
-- refine homotopy_group_homomorphism_pcompose _ _ _ ⬝hty _,
|
||||
-- refine hwhisker_left _ (homotopy_group_homomorphism_pcompose _ _ _) ⬝hty _,
|
||||
-- refine (hassoc _ _ _)⁻¹ʰᵗʸ ⬝hty _, exact sorry },
|
||||
-- { intro f, apply eq_of_phomotopy, refine !passoc⁻¹* ⬝* _, apply pinv_right_phomotopy_of_phomotopy,
|
||||
-- exact sorry }
|
||||
-- end
|
||||
|
||||
-- definition EMadd1_functor_equiv' (n : ℕ) (X Y : Type*) [H1 : is_conn (n+1) X] [H2 : is_trunc (n+1+1) X]
|
||||
-- [H3 : is_conn (n+1) Y] [H4 : is_trunc (n+1+1) Y] : (X →* Y) ≃ (πag[n+2] X →g πag[n+2] Y) :=
|
||||
-- begin
|
||||
-- fapply equiv.MK,
|
||||
-- { intro f, exact π→g[n+2] f },
|
||||
-- { intro φ, exact EMadd1_pequiv_type Y n ∘* EMadd1_functor φ (n+1) ∘* (EMadd1_pequiv_type X n)⁻¹ᵉ* },
|
||||
-- { intro φ, apply homomorphism_eq,
|
||||
-- refine homotopy_group_homomorphism_pcompose _ _ _ ⬝hty _,
|
||||
-- refine hwhisker_left _ (homotopy_group_homomorphism_pcompose _ _ _) ⬝hty _,
|
||||
-- intro g, exact sorry },
|
||||
-- { intro f, apply eq_of_phomotopy, refine !passoc⁻¹* ⬝* _, apply pinv_right_phomotopy_of_phomotopy,
|
||||
-- exact !EMadd1_pequiv_type_natural⁻¹* }
|
||||
-- end
|
||||
|
||||
-- definition EM_functor_equiv (n : ℕ) (G H : AbGroup) : (G →g H) ≃ (EMadd1 G (n+1) →* EMadd1 H (n+1)) :=
|
||||
-- begin
|
||||
-- fapply equiv.MK,
|
||||
-- { intro φ, exact EMadd1_functor φ (n+1) },
|
||||
-- { intro f, exact ghomotopy_group_EMadd1 H (n+1) ∘g π→g[n+2] f ∘g (ghomotopy_group_EMadd1 G (n+1))⁻¹ᵍ },
|
||||
-- { intro f, apply homomorphism_eq, },
|
||||
-- { }
|
||||
-- end
|
||||
|
||||
|
||||
-- definition EMadd1_pmap {G : AbGroup} {X : Type*} (n : ℕ)
|
||||
-- (e : Ω[succ n] X ≃* G)
|
||||
-- (r : Πp q, e (p ⬝ q) = e p * e q)
|
||||
-- [H1 : is_conn n X] [H2 : is_trunc (n.+1) X] : EMadd1 G n →* X :=
|
||||
-- begin
|
||||
-- revert X e r H1 H2, induction n with n f: intro X e r H1 H2,
|
||||
-- { exact EM1_pmap e⁻¹ᵉ* (equiv.inv_preserve_binary e concat mul r) },
|
||||
-- rewrite [EMadd1_succ],
|
||||
-- exact ptrunc.elim ((succ n).+1)
|
||||
-- (psusp.elim (f _ (EM_up e) (is_homomorphism_EM_up e r) _ _)),
|
||||
-- end
|
||||
|
||||
-- definition is_set_pmap_ptruncconntype {n : ℕ₋₂} (X Y : (n.+1)-Type*[n]) : is_set (X →* Y) :=
|
||||
-- begin
|
||||
-- apply is_trunc_succ_intro,
|
||||
-- intro f g,
|
||||
-- apply @(is_trunc_equiv_closed_rev -1 (pmap_eq_equiv f g)),
|
||||
-- apply is_prop.mk,
|
||||
-- exact sorry
|
||||
-- end
|
||||
|
||||
|
||||
end
|
||||
|
||||
/- category -/
|
||||
structure ptruncconntype' (n : ℕ₋₂) : Type :=
|
||||
(A : Type*)
|
||||
(H1 : is_conn n A)
|
||||
(H2 : is_trunc (n+1) A)
|
||||
|
||||
attribute ptruncconntype'.A [coercion]
|
||||
attribute ptruncconntype'.H1 ptruncconntype'.H2 [instance]
|
||||
|
||||
definition EM1_pequiv_ptruncconntype' (X : ptruncconntype' 0) : EM1 (πg[1] X) ≃* X :=
|
||||
@(EM1_pequiv_type X) _ (ptruncconntype'.H2 X)
|
||||
|
||||
definition EMadd1_pequiv_ptruncconntype' {n : ℕ} (X : ptruncconntype' (n+1)) :
|
||||
EMadd1 (πag[n+2] X) (succ n) ≃* X :=
|
||||
@(EMadd1_pequiv_type X n) _ (ptruncconntype'.H2 X)
|
||||
|
||||
open trunc_index
|
||||
definition is_set_pmap_ptruncconntype {n : ℕ₋₂} (X Y : ptruncconntype' n) : is_set (X →* Y) :=
|
||||
begin
|
||||
cases n with n, { exact _ },
|
||||
cases Y with Y H1 H2, cases Y with Y y₀,
|
||||
exact is_trunc_pmap X n -1 (ptrunctype.mk Y _ y₀),
|
||||
end
|
||||
|
||||
open category
|
||||
definition precategory_ptruncconntype'.{u} [constructor] (n : ℕ₋₂) :
|
||||
precategory.{u+1 u} (ptruncconntype' n) :=
|
||||
begin
|
||||
fapply precategory.mk,
|
||||
{ exact λX Y, X →* Y },
|
||||
{ exact is_set_pmap_ptruncconntype },
|
||||
{ exact λX Y Z g f, g ∘* f },
|
||||
{ exact λX, pid X },
|
||||
{ intros, apply eq_of_phomotopy, exact !passoc⁻¹* },
|
||||
{ intros, apply eq_of_phomotopy, apply pid_pcompose },
|
||||
{ intros, apply eq_of_phomotopy, apply pcompose_pid }
|
||||
end
|
||||
|
||||
definition cptruncconntype' [constructor] (n : ℕ₋₂) : Precategory :=
|
||||
precategory.Mk (precategory_ptruncconntype' n)
|
||||
|
||||
notation `cType*[`:95 n `]`:0 := cptruncconntype' n
|
||||
|
||||
definition tEM1 [constructor] (G : Group) : ptruncconntype' 0 :=
|
||||
ptruncconntype'.mk (EM1 G) _ !is_trunc_EM1
|
||||
|
||||
definition tEM [constructor] (G : AbGroup) (n : ℕ) : ptruncconntype' (n.-1) :=
|
||||
ptruncconntype'.mk (EM G n) _ !is_trunc_EM
|
||||
|
||||
open functor
|
||||
|
||||
definition EM1_cfunctor : Grp ⇒ cType*[0] :=
|
||||
functor.mk
|
||||
(λG, tEM1 G)
|
||||
(λG H φ, EM1_functor φ)
|
||||
begin intro, fapply eq_of_phomotopy, apply EM1_functor_gid end
|
||||
begin intros, fapply eq_of_phomotopy, apply EM1_functor_gcompose end
|
||||
|
||||
definition EM_cfunctor (n : ℕ) : AbGrp ⇒ cType*[n.-1] :=
|
||||
functor.mk
|
||||
(λG, tEM G n)
|
||||
(λG H φ, EM_functor φ n)
|
||||
begin intro, fapply eq_of_phomotopy, apply EM_functor_gid end
|
||||
begin intros, fapply eq_of_phomotopy, apply EM_functor_gcompose end
|
||||
|
||||
definition homotopy_group_cfunctor : cType*[0] ⇒ Grp :=
|
||||
functor.mk
|
||||
(λX, πg[1] X)
|
||||
(λX Y f, π→g[1] f)
|
||||
begin intro, apply homomorphism_eq, exact to_homotopy !homotopy_group_functor_pid end
|
||||
begin intros, apply homomorphism_eq, exact to_homotopy !homotopy_group_functor_compose end
|
||||
|
||||
definition ab_homotopy_group_cfunctor (n : ℕ) : cType*[n+2.-1] ⇒ AbGrp :=
|
||||
functor.mk
|
||||
(λX, πag[n+2] X)
|
||||
(λX Y f, π→g[n+2] f)
|
||||
begin intro, apply homomorphism_eq, exact to_homotopy !homotopy_group_functor_pid end
|
||||
begin intros, apply homomorphism_eq, exact to_homotopy !homotopy_group_functor_compose end
|
||||
|
||||
open nat_trans category
|
||||
|
||||
definition is_equivalence_EM1_cfunctor.{u} : is_equivalence EM1_cfunctor.{u} :=
|
||||
begin
|
||||
fapply is_equivalence.mk,
|
||||
{ exact homotopy_group_cfunctor.{u} },
|
||||
{ fapply natural_iso.mk,
|
||||
{ fapply nat_trans.mk,
|
||||
{ intro G, exact (fundamental_group_EM1' G)⁻¹ᵍ },
|
||||
{ intro G H φ, apply homomorphism_eq, exact htyhinverse (homotopy_group_functor_EM1_functor φ) }},
|
||||
{ intro G, fapply iso.is_iso.mk,
|
||||
{ exact fundamental_group_EM1' G },
|
||||
{ apply homomorphism_eq,
|
||||
exact to_right_inv (equiv_of_isomorphism (fundamental_group_EM1' G)), },
|
||||
{ apply homomorphism_eq,
|
||||
exact to_left_inv (equiv_of_isomorphism (fundamental_group_EM1' G)), }}},
|
||||
{ fapply natural_iso.mk,
|
||||
{ fapply nat_trans.mk,
|
||||
{ intro X, exact EM1_pequiv_ptruncconntype' X },
|
||||
{ intro X Y f, apply eq_of_phomotopy, apply EM1_pequiv_type_natural }},
|
||||
{ intro X, fapply iso.is_iso.mk,
|
||||
{ exact (EM1_pequiv_ptruncconntype' X)⁻¹ᵉ* },
|
||||
{ apply eq_of_phomotopy, apply pleft_inv },
|
||||
{ apply eq_of_phomotopy, apply pright_inv }}}
|
||||
end
|
||||
|
||||
definition is_equivalence_EM_cfunctor (n : ℕ) : is_equivalence (EM_cfunctor (n+2)) :=
|
||||
begin
|
||||
fapply is_equivalence.mk,
|
||||
{ exact ab_homotopy_group_cfunctor n },
|
||||
{ fapply natural_iso.mk,
|
||||
{ fapply nat_trans.mk,
|
||||
{ intro G, exact (ghomotopy_group_EMadd1' G (n+1))⁻¹ᵍ },
|
||||
{ intro G H φ, apply homomorphism_eq, exact homotopy_group_functor_EMadd1_functor' φ (n+1) }},
|
||||
{ intro G, fapply iso.is_iso.mk,
|
||||
{ exact ghomotopy_group_EMadd1' G (n+1) },
|
||||
{ apply homomorphism_eq,
|
||||
exact to_right_inv (equiv_of_isomorphism (ghomotopy_group_EMadd1' G (n+1))), },
|
||||
{ apply homomorphism_eq,
|
||||
exact to_left_inv (equiv_of_isomorphism (ghomotopy_group_EMadd1' G (n+1))), }}},
|
||||
{ fapply natural_iso.mk,
|
||||
{ fapply nat_trans.mk,
|
||||
{ intro X, exact EMadd1_pequiv_ptruncconntype' X },
|
||||
{ intro X Y f, apply eq_of_phomotopy, apply EMadd1_pequiv_type_natural }},
|
||||
{ intro X, fapply iso.is_iso.mk,
|
||||
{ exact (EMadd1_pequiv_ptruncconntype' X)⁻¹ᵉ* },
|
||||
{ apply eq_of_phomotopy, apply pleft_inv },
|
||||
{ apply eq_of_phomotopy, apply pright_inv }}}
|
||||
end
|
||||
|
||||
definition Grp_equivalence_cptruncconntype'.{u} [constructor] : Grp.{u} ≃c cType*[0] :=
|
||||
equivalence.mk EM1_cfunctor.{u} is_equivalence_EM1_cfunctor.{u}
|
||||
|
||||
definition AbGrp_equivalence_cptruncconntype' [constructor] (n : ℕ) : AbGrp ≃c cType*[n+2.-1] :=
|
||||
equivalence.mk (EM_cfunctor (n+2)) (is_equivalence_EM_cfunctor n)
|
||||
|
||||
end EM
|
|
@ -1,15 +1,15 @@
|
|||
-- Authors: Floris van Doorn
|
||||
|
||||
import homotopy.smash
|
||||
import homotopy.smash ..move_to_lib
|
||||
|
||||
open bool pointed eq equiv is_equiv sum bool prod unit circle cofiber prod.ops wedge
|
||||
|
||||
/- smash A (susp B) = susp (smash A B) <- this follows from associativity and smash with S¹-/
|
||||
/- smash A (susp B) = susp (smash A B) <- this follows from associativity and smash with S¹ -/
|
||||
|
||||
/- To prove: Σ(X × Y) ≃ ΣX ∨ ΣY ∨ Σ(X ∧ Y) (notation means suspension, wedge, smash),
|
||||
and both are equivalent to the reduced join -/
|
||||
|
||||
/- To prove: commutative, associative -/
|
||||
/- To prove: associative -/
|
||||
|
||||
/- smash A B ≃ pcofiber (pprod_of_pwedge A B) -/
|
||||
|
||||
|
@ -71,13 +71,41 @@ namespace smash
|
|||
{ exact smash_of_pcofiber_glue x }
|
||||
end
|
||||
|
||||
set_option pp.binder_types true
|
||||
-- maybe useful lemma:
|
||||
open function pushout
|
||||
definition pushout_glue_natural {A B C D E : Type} {f : A → B} {g : A → C} (a : A)
|
||||
{h₁ : B → D} {k₁ : C → D} (p₁ : h₁ ∘ f ~ k₁ ∘ g)
|
||||
{h₂ : B → E} {k₂ : C → E} (p₂ : h₂ ∘ f ~ k₂ ∘ g) :
|
||||
@square (pushout (pushout.elim h₁ k₁ p₁) (pushout.elim h₂ k₂ p₂)) _ _ _ _
|
||||
(pushout.glue (inl (f a))) (pushout.glue (inr (g a)))
|
||||
(ap pushout.inl (p₁ a)) (ap pushout.inr (p₂ a)) :=
|
||||
begin
|
||||
apply square_of_eq, symmetry,
|
||||
refine _ ⬝ (ap_con_eq_con_ap (pushout.glue) (pushout.glue a)) ⬝ _,
|
||||
apply whisker_right, exact sorry,
|
||||
apply whisker_left, exact sorry
|
||||
end
|
||||
|
||||
definition pcofiber_of_smash_of_pcofiber (x : pcofiber (pprod_of_pwedge A B)) :
|
||||
pcofiber_of_smash (smash_of_pcofiber x) = x :=
|
||||
begin
|
||||
induction x with x x,
|
||||
{ refine (pushout.glue pt)⁻¹ },
|
||||
{ exact sorry },
|
||||
{ exact sorry }
|
||||
{ induction x with a b, reflexivity },
|
||||
{ apply eq_pathover_id_right, esimp,
|
||||
refine ap_compose' pcofiber_of_smash smash_of_pcofiber (cofiber.glue x) ⬝ph _,
|
||||
refine ap02 _ !cofiber.elim_glue' ⬝ph _,
|
||||
induction x,
|
||||
{ refine (!ap_con ⬝ !elim_gluel ◾ (!ap_inv ⬝ !elim_gluel⁻² ⬝ !inv_inv)) ⬝ph _,
|
||||
apply whisker_tl, apply hrfl },
|
||||
{ esimp, refine (!ap_con ⬝ !elim_gluer ◾ (!ap_inv ⬝ !elim_gluer⁻² ⬝ !inv_inv)) ⬝ph _,
|
||||
apply square_of_eq, esimp, apply whisker_right, apply inverse2,
|
||||
refine _ ⬝ (ap_con_eq_con_ap (pushout.glue) (wedge.glue A B))⁻¹ ⬝ _,
|
||||
{ apply whisker_left, refine _ ⬝ (ap_compose' pushout.inr _ _)⁻¹,
|
||||
exact ap02 _ !pushout.elim_glue⁻¹ },
|
||||
{ refine whisker_right _ _ ⬝ !idp_con, apply ap_constant }},
|
||||
{ exact sorry }}
|
||||
end
|
||||
|
||||
definition smash_of_pcofiber_of_smash (x : smash A B) :
|
||||
|
@ -98,7 +126,7 @@ namespace smash
|
|||
end
|
||||
|
||||
variables (A B)
|
||||
definition smash_pequiv_pcofiber : smash A B ≃* pcofiber (pprod_of_pwedge A B) :=
|
||||
definition smash_pequiv_pcofiber [constructor] : smash A B ≃* pcofiber (pprod_of_pwedge A B) :=
|
||||
begin
|
||||
fapply pequiv_of_equiv,
|
||||
{ fapply equiv.MK,
|
||||
|
@ -106,17 +134,50 @@ namespace smash
|
|||
{ apply smash_of_pcofiber },
|
||||
{ exact pcofiber_of_smash_of_pcofiber },
|
||||
{ exact smash_of_pcofiber_of_smash }},
|
||||
{ esimp, symmetry, apply pushout.glue pt }
|
||||
{ symmetry, exact pushout.glue (Point (pwedge A B)) }
|
||||
end
|
||||
|
||||
variables {A B}
|
||||
|
||||
/- commutativity -/
|
||||
|
||||
definition smash_flip (x : smash A B) : smash B A :=
|
||||
begin
|
||||
induction x,
|
||||
{ exact smash.mk b a },
|
||||
{ exact auxr },
|
||||
{ exact auxl },
|
||||
{ exact gluer a },
|
||||
{ exact gluel b }
|
||||
end
|
||||
|
||||
definition smash_flip_smash_flip (x : smash A B) : smash_flip (smash_flip x) = x :=
|
||||
begin
|
||||
induction x,
|
||||
{ reflexivity },
|
||||
{ reflexivity },
|
||||
{ reflexivity },
|
||||
{ apply eq_pathover_id_right,
|
||||
refine ap_compose' smash_flip _ _ ⬝ ap02 _ !elim_gluel ⬝ !elim_gluer ⬝ph _,
|
||||
apply hrfl },
|
||||
{ apply eq_pathover_id_right,
|
||||
refine ap_compose' smash_flip _ _ ⬝ ap02 _ !elim_gluer ⬝ !elim_gluel ⬝ph _,
|
||||
apply hrfl }
|
||||
end
|
||||
|
||||
definition smash_comm : smash A B ≃* smash B A :=
|
||||
begin
|
||||
fapply pequiv_of_equiv,
|
||||
{ apply equiv.MK, do 2 exact smash_flip_smash_flip },
|
||||
{ reflexivity }
|
||||
end
|
||||
|
||||
/- smash A S¹ = susp A -/
|
||||
open susp
|
||||
|
||||
definition psusp_of_smash_pcircle [unfold 2] (x : smash A S¹*) : psusp A :=
|
||||
begin
|
||||
induction x,
|
||||
induction x using smash.elim,
|
||||
{ induction b, exact pt, exact merid a ⬝ (merid pt)⁻¹ },
|
||||
{ exact pt },
|
||||
{ exact pt },
|
||||
|
@ -133,7 +194,7 @@ namespace smash
|
|||
{ exact gluel' pt a ⬝ ap (smash.mk a) loop ⬝ gluel' a pt },
|
||||
end
|
||||
|
||||
exit -- the definitions below compile, but take a long time to do so and have sorry's in them
|
||||
-- the definitions below compile, but take a long time to do so and have sorry's in them
|
||||
definition smash_pcircle_of_psusp_of_smash_pcircle_pt [unfold 3] (a : A) (x : S¹*) :
|
||||
smash_pcircle_of_psusp (psusp_of_smash_pcircle (smash.mk a x)) = smash.mk a x :=
|
||||
begin
|
||||
|
@ -152,18 +213,19 @@ exit -- the definitions below compile, but take a long time to do so and have so
|
|||
refine !ap_mk_right ⬝ !con.right_inv end end }
|
||||
end
|
||||
|
||||
definition smash_pcircle_of_psusp_of_smash_pcircle_gluer_base (b : S¹*)
|
||||
: square (smash_pcircle_of_psusp_of_smash_pcircle_pt (Point A) b)
|
||||
(gluer pt)
|
||||
(ap smash_pcircle_of_psusp (ap (λ a, psusp_of_smash_pcircle a) (gluer b)))
|
||||
(gluer b) :=
|
||||
begin
|
||||
refine ap02 _ !elim_gluer ⬝ph _,
|
||||
induction b,
|
||||
{ apply square_of_eq, exact whisker_right _ !con.right_inv },
|
||||
{ apply square_pathover', exact sorry }
|
||||
end
|
||||
-- definition smash_pcircle_of_psusp_of_smash_pcircle_gluer_base (b : S¹*)
|
||||
-- : square (smash_pcircle_of_psusp_of_smash_pcircle_pt (Point A) b)
|
||||
-- (gluer pt)
|
||||
-- (ap smash_pcircle_of_psusp (ap (λ a, psusp_of_smash_pcircle a) (gluer b)))
|
||||
-- (gluer b) :=
|
||||
-- begin
|
||||
-- refine ap02 _ !elim_gluer ⬝ph _,
|
||||
-- induction b,
|
||||
-- { apply square_of_eq, exact whisker_right _ !con.right_inv },
|
||||
-- { apply square_pathover', exact sorry }
|
||||
-- end
|
||||
|
||||
exit
|
||||
definition smash_pcircle_pequiv [constructor] (A : Type*) : smash A S¹* ≃* psusp A :=
|
||||
begin
|
||||
fapply pequiv_of_equiv,
|
||||
|
@ -178,7 +240,8 @@ exit -- the definitions below compile, but take a long time to do so and have so
|
|||
refine ap02 _ !elim_merid ⬝ph _,
|
||||
rewrite [↑gluel', +ap_con, +ap_inv, -ap_compose'],
|
||||
refine (_ ◾ _⁻² ◾ _ ◾ (_ ◾ _⁻²)) ⬝ph _,
|
||||
rotate 5, do 2 apply elim_gluel, esimp, apply elim_loop, do 2 apply elim_gluel,
|
||||
rotate 5, do 2 (unfold [psusp_of_smash_pcircle]; apply elim_gluel),
|
||||
esimp, apply elim_loop, do 2 (unfold [psusp_of_smash_pcircle]; apply elim_gluel),
|
||||
refine idp_con (merid a ⬝ (merid (Point A))⁻¹) ⬝ph _,
|
||||
apply square_of_eq, refine !idp_con ⬝ _⁻¹, apply inv_con_cancel_right } end end },
|
||||
{ intro x, induction x using smash.rec,
|
||||
|
@ -187,10 +250,12 @@ exit -- the definitions below compile, but take a long time to do so and have so
|
|||
{ exact gluer pt },
|
||||
{ apply eq_pathover_id_right,
|
||||
refine ap_compose smash_pcircle_of_psusp _ _ ⬝ph _,
|
||||
unfold [psusp_of_smash_pcircle],
|
||||
refine ap02 _ !elim_gluel ⬝ph _,
|
||||
esimp, apply whisker_rt, exact vrfl },
|
||||
{ apply eq_pathover_id_right,
|
||||
refine ap_compose smash_pcircle_of_psusp _ _ ⬝ph _,
|
||||
unfold [psusp_of_smash_pcircle],
|
||||
refine ap02 _ !elim_gluer ⬝ph _,
|
||||
induction b,
|
||||
{ apply square_of_eq, exact whisker_right _ !con.right_inv },
|
||||
|
|
|
@ -152,7 +152,7 @@ namespace spectrum
|
|||
~* (glue Z n ∘* to_fun g n) ∘* to_fun f n : passoc
|
||||
... ~* (Ω→(to_fun g (S n)) ∘* glue Y n) ∘* to_fun f n : pwhisker_right (to_fun f n) (glue_square g n)
|
||||
... ~* Ω→(to_fun g (S n)) ∘* (glue Y n ∘* to_fun f n) : passoc
|
||||
... ~* Ω→(to_fun g (S n)) ∘* (Ω→ (f (S n)) ∘* glue X n) : pwhisker_left Ω→(to_fun g (S n)) (glue_square f n)
|
||||
... ~* Ω→(to_fun g (S n)) ∘* (Ω→ (f (S n)) ∘* glue X n) : pwhisker_left (Ω→(to_fun g (S n))) (glue_square f n)
|
||||
... ~* (Ω→(to_fun g (S n)) ∘* Ω→(f (S n))) ∘* glue X n : passoc
|
||||
... ~* Ω→(to_fun g (S n) ∘* to_fun f (S n)) ∘* glue X n : pwhisker_right (glue X n) (ap1_pcompose _ _))
|
||||
|
||||
|
|
|
@ -5,9 +5,301 @@ import homotopy.sphere2 homotopy.cofiber homotopy.wedge
|
|||
open eq nat int susp pointed pmap sigma is_equiv equiv fiber algebra trunc trunc_index pi group
|
||||
is_trunc function sphere
|
||||
|
||||
attribute pwedge [constructor]
|
||||
attribute is_succ_add_right is_succ_add_left is_succ_bit0 [constructor]
|
||||
|
||||
namespace eq
|
||||
|
||||
definition compose_id {A B : Type} (f : A → B) : f ∘ id ~ f :=
|
||||
by reflexivity
|
||||
|
||||
definition id_compose {A B : Type} (f : A → B) : id ∘ f ~ f :=
|
||||
by reflexivity
|
||||
|
||||
end eq
|
||||
|
||||
namespace cofiber
|
||||
|
||||
-- replace the one in homotopy.cofiber, which has an superfluous argument
|
||||
protected theorem elim_glue' {A B : Type} {f : A → B} {P : Type} (Pbase : P) (Pcod : B → P)
|
||||
(Pglue : Π (x : A), Pbase = Pcod (f x)) (a : A)
|
||||
: ap (cofiber.elim Pbase Pcod Pglue) (cofiber.glue a) = Pglue a :=
|
||||
!pushout.elim_glue
|
||||
|
||||
end cofiber
|
||||
|
||||
namespace wedge
|
||||
open pushout unit
|
||||
protected definition glue (A B : Type*) : inl pt = inr pt :> wedge A B :=
|
||||
pushout.glue ⋆
|
||||
|
||||
end wedge
|
||||
|
||||
namespace pointed
|
||||
|
||||
definition to_fun_pequiv_trans {X Y Z : Type*} (f : X ≃* Y) (g :Y ≃* Z) : f ⬝e* g ~ g ∘ f :=
|
||||
λx, idp
|
||||
|
||||
definition pcompose2' {A B C : Type*} {g g' : B →* C} {f f' : A →* B} (q : g ~* g') (p : f ~* f') :
|
||||
g ∘* f ~* g' ∘* f' :=
|
||||
pwhisker_right f q ⬝* pwhisker_left g' p
|
||||
|
||||
infixr ` ◾*' `:80 := pcompose2'
|
||||
|
||||
definition phomotopy_of_homotopy {X Y : Type*} {f g : X →* Y} (h : f ~ g) [is_set Y] : f ~* g :=
|
||||
begin
|
||||
fapply phomotopy.mk,
|
||||
{ exact h },
|
||||
{ apply is_set.elim }
|
||||
end
|
||||
|
||||
-- /- the pointed type of (unpointed) dependent maps -/
|
||||
-- definition pupi [constructor] {A : Type} (P : A → Type*) : Type* :=
|
||||
-- pointed.mk' (Πa, P a)
|
||||
|
||||
-- definition loop_pupi_commute {A : Type} (B : A → Type*) : Ω(pupi B) ≃* pupi (λa, Ω (B a)) :=
|
||||
-- pequiv_of_equiv eq_equiv_homotopy rfl
|
||||
|
||||
-- definition equiv_pupi_right {A : Type} {P Q : A → Type*} (g : Πa, P a ≃* Q a)
|
||||
-- : pupi P ≃* pupi Q :=
|
||||
-- pequiv_of_equiv (pi_equiv_pi_right g)
|
||||
-- begin esimp, apply eq_of_homotopy, intros a, esimp, exact (respect_pt (g a)) end
|
||||
|
||||
/-
|
||||
Squares of pointed homotopies
|
||||
|
||||
We treat expressions of the form
|
||||
k ∘* f ~* g ∘* h
|
||||
as squares, where f is the top, g is the bottom, h is the left face and k is the right face.
|
||||
Then the following are operations on squares
|
||||
-/
|
||||
|
||||
definition psquare {A B C D : Type*} (f : A →* B) (g : C →* D) (h : A ≃* C) (k : B ≃* D) : Type :=
|
||||
k ∘* f ~* g ∘* h
|
||||
|
||||
definition phcompose {A B C D B' D' : Type*} {f : A →* B} {g : C →* D} {h : A →* C} {k : B →* D}
|
||||
{f' : B →* B'} {g' : D →* D'} {k' : B' →* D'} (p : k ∘* f ~* g ∘* h)
|
||||
(q : k' ∘* f' ~* g' ∘* k) : k' ∘* (f' ∘* f) ~* (g' ∘* g) ∘* h :=
|
||||
!passoc⁻¹* ⬝* pwhisker_right f q ⬝* !passoc ⬝* pwhisker_left g' p ⬝* !passoc⁻¹*
|
||||
|
||||
definition pvcompose {A B C D C' D' : Type*} {f : A →* B} {g : C →* D} {h : A →* C} {k : B →* D}
|
||||
{g' : C' →* D'} {h' : C →* C'} {k' : D →* D'} (p : k ∘* f ~* g ∘* h)
|
||||
(q : k' ∘* g ~* g' ∘* h') : (k' ∘* k) ∘* f ~* g' ∘* (h' ∘* h) :=
|
||||
(phcompose p⁻¹* q⁻¹*)⁻¹*
|
||||
|
||||
definition phinverse {A B C D : Type*} {f : A ≃* B} {g : C ≃* D} {h : A →* C} {k : B →* D}
|
||||
(p : k ∘* f ~* g ∘* h) : h ∘* f⁻¹ᵉ* ~* g⁻¹ᵉ* ∘* k :=
|
||||
!pid_pcompose⁻¹* ⬝* pwhisker_right _ (pleft_inv g)⁻¹* ⬝* !passoc ⬝*
|
||||
pwhisker_left _
|
||||
(!passoc⁻¹* ⬝* pwhisker_right _ p⁻¹* ⬝* !passoc ⬝* pwhisker_left _ !pright_inv ⬝* !pcompose_pid)
|
||||
|
||||
definition pvinverse {A B C D : Type*} {f : A →* B} {g : C →* D} {h : A ≃* C} {k : B ≃* D}
|
||||
(p : k ∘* f ~* g ∘* h) : k⁻¹ᵉ* ∘* g ~* f ∘* h⁻¹ᵉ* :=
|
||||
(phinverse p⁻¹*)⁻¹*
|
||||
|
||||
infix ` ⬝h* `:73 := phcompose
|
||||
infix ` ⬝v* `:73 := pvcompose
|
||||
postfix `⁻¹ʰ*`:(max+1) := phinverse
|
||||
postfix `⁻¹ᵛ*`:(max+1) := pvinverse
|
||||
|
||||
definition ap1_psquare {A B C D : Type*} {f : A →* B} {g : C →* D} {h : A →* C} {k : B →* D}
|
||||
(p : k ∘* f ~* g ∘* h) : Ω→ k ∘* Ω→ f ~* Ω→ g ∘* Ω→ h :=
|
||||
!ap1_pcompose⁻¹* ⬝* ap1_phomotopy p ⬝* !ap1_pcompose
|
||||
|
||||
definition apn_psquare (n : ℕ) {A B C D : Type*} {f : A →* B} {g : C →* D} {h : A →* C} {k : B →* D}
|
||||
(p : k ∘* f ~* g ∘* h) : Ω→[n] k ∘* Ω→[n] f ~* Ω→[n] g ∘* Ω→[n] h :=
|
||||
!apn_pcompose⁻¹* ⬝* apn_phomotopy n p ⬝* !apn_pcompose
|
||||
|
||||
definition ptrunc_functor_psquare (n : ℕ₋₂) {A B C D : Type*} {f : A →* B} {g : C →* D} {h : A →* C}
|
||||
{k : B →* D} (p : k ∘* f ~* g ∘* h) :
|
||||
ptrunc_functor n k ∘* ptrunc_functor n f ~* ptrunc_functor n g ∘* ptrunc_functor n h :=
|
||||
!ptrunc_functor_pcompose⁻¹* ⬝* ptrunc_functor_phomotopy n p ⬝* !ptrunc_functor_pcompose
|
||||
|
||||
definition homotopy_group_homomorphism_psquare (n : ℕ) [H : is_succ n] {A B C D : Type*}
|
||||
{f : A →* B} {g : C →* D} {h : A →* C} {k : B →* D} (p : k ∘* f ~* g ∘* h) :
|
||||
π→g[n] k ∘ π→g[n] f ~ π→g[n] g ∘ π→g[n] h :=
|
||||
begin
|
||||
induction H with n, exact to_homotopy (ptrunc_functor_psquare 0 (apn_psquare (succ n) p))
|
||||
end
|
||||
|
||||
definition htyhcompose {A B C D B' D' : Type} {f : A → B} {g : C → D} {h : A → C} {k : B → D}
|
||||
{f' : B → B'} {g' : D → D'} {k' : B' → D'} (p : k ∘ f ~ g ∘ h)
|
||||
(q : k' ∘ f' ~ g' ∘ k) : k' ∘ (f' ∘ f) ~ (g' ∘ g) ∘ h :=
|
||||
λa, q (f a) ⬝ ap g' (p a)
|
||||
|
||||
definition htyhinverse {A B C D : Type} {f : A ≃ B} {g : C ≃ D} {h : A → C} {k : B → D}
|
||||
(p : k ∘ f ~ g ∘ h) : h ∘ f⁻¹ᵉ ~ g⁻¹ᵉ ∘ k :=
|
||||
λb, eq_inv_of_eq ((p (f⁻¹ᵉ b))⁻¹ ⬝ ap k (to_right_inv f b))
|
||||
|
||||
end pointed open pointed
|
||||
|
||||
namespace trunc
|
||||
|
||||
-- TODO: redefine loopn_ptrunc_pequiv
|
||||
definition apn_ptrunc_functor (n : ℕ₋₂) (k : ℕ) {A B : Type*} (f : A →* B) :
|
||||
Ω→[k] (ptrunc_functor (n+k) f) ∘* (loopn_ptrunc_pequiv n k A)⁻¹ᵉ* ~*
|
||||
(loopn_ptrunc_pequiv n k B)⁻¹ᵉ* ∘* ptrunc_functor n (Ω→[k] f) :=
|
||||
begin
|
||||
revert n, induction k with k IH: intro n,
|
||||
{ reflexivity },
|
||||
{ exact sorry }
|
||||
end
|
||||
|
||||
definition ptrunc_pequiv_natural [constructor] (n : ℕ₋₂) {A B : Type*} (f : A →* B) [is_trunc n A]
|
||||
[is_trunc n B] : f ∘* ptrunc_pequiv n A ~* ptrunc_pequiv n B ∘* ptrunc_functor n f :=
|
||||
begin
|
||||
fapply phomotopy.mk,
|
||||
{ intro a, induction a with a, reflexivity },
|
||||
{ refine !idp_con ⬝ _ ⬝ !idp_con⁻¹, refine !ap_compose'⁻¹ ⬝ _, apply ap_id }
|
||||
end
|
||||
|
||||
definition ptr_natural [constructor] (n : ℕ₋₂) {A B : Type*} (f : A →* B) :
|
||||
ptrunc_functor n f ∘* ptr n A ~* ptr n B ∘* f :=
|
||||
begin
|
||||
fapply phomotopy.mk,
|
||||
{ intro a, reflexivity },
|
||||
{ reflexivity }
|
||||
end
|
||||
|
||||
definition ptrunc_elim_pcompose (n : ℕ₋₂) {A B C : Type*} (g : B →* C) (f : A →* B) [is_trunc n B]
|
||||
[is_trunc n C] : ptrunc.elim n (g ∘* f) ~* g ∘* ptrunc.elim n f :=
|
||||
begin
|
||||
fapply phomotopy.mk,
|
||||
{ intro a, induction a with a, reflexivity },
|
||||
{ apply idp_con }
|
||||
end
|
||||
|
||||
end trunc
|
||||
|
||||
namespace is_equiv
|
||||
|
||||
definition inv_homotopy_inv {A B : Type} {f g : A → B} [is_equiv f] [is_equiv g] (p : f ~ g)
|
||||
: f⁻¹ ~ g⁻¹ :=
|
||||
λb, (left_inv g (f⁻¹ b))⁻¹ ⬝ ap g⁻¹ ((p (f⁻¹ b))⁻¹ ⬝ right_inv f b)
|
||||
|
||||
definition to_inv_homotopy_to_inv {A B : Type} {f g : A ≃ B} (p : f ~ g) : f⁻¹ᵉ ~ g⁻¹ᵉ :=
|
||||
inv_homotopy_inv p
|
||||
|
||||
end is_equiv
|
||||
|
||||
namespace prod
|
||||
|
||||
open prod.ops
|
||||
definition prod_pathover_equiv {A : Type} {B C : A → Type} {a a' : A} (p : a = a')
|
||||
(x : B a × C a) (x' : B a' × C a') : x =[p] x' ≃ x.1 =[p] x'.1 × x.2 =[p] x'.2 :=
|
||||
begin
|
||||
fapply equiv.MK,
|
||||
{ intro q, induction q, constructor: constructor },
|
||||
{ intro v, induction v with q r, exact prod_pathover _ _ _ q r },
|
||||
{ intro v, induction v with q r, induction x with b c, induction x' with b' c',
|
||||
esimp at *, induction q, refine idp_rec_on r _, reflexivity },
|
||||
{ intro q, induction q, induction x with b c, reflexivity }
|
||||
end
|
||||
|
||||
end prod open prod
|
||||
|
||||
namespace sigma
|
||||
|
||||
-- set_option pp.notation false
|
||||
-- set_option pp.binder_types true
|
||||
|
||||
open sigma.ops
|
||||
definition pathover_pr1 [unfold 9] {A : Type} {B : A → Type} {C : Πa, B a → Type}
|
||||
{a a' : A} {p : a = a'} {x : Σb, C a b} {x' : Σb', C a' b'}
|
||||
(q : x =[p] x') : x.1 =[p] x'.1 :=
|
||||
begin induction q, constructor end
|
||||
|
||||
definition is_prop_elimo_self {A : Type} (B : A → Type) {a : A} (b : B a) {H : is_prop (B a)} :
|
||||
@is_prop.elimo A B a a idp b b H = idpo :=
|
||||
!is_prop.elim
|
||||
|
||||
definition sigma_pathover_equiv_of_is_prop {A : Type} {B : A → Type} (C : Πa, B a → Type)
|
||||
{a a' : A} (p : a = a') (x : Σb, C a b) (x' : Σb', C a' b')
|
||||
[Πa b, is_prop (C a b)] : x =[p] x' ≃ x.1 =[p] x'.1 :=
|
||||
begin
|
||||
fapply equiv.MK,
|
||||
{ exact pathover_pr1 },
|
||||
{ intro q, induction x with b c, induction x' with b' c', esimp at q, induction q,
|
||||
apply pathover_idp_of_eq, exact sigma_eq idp !is_prop.elimo },
|
||||
{ intro q, induction x with b c, induction x' with b' c', esimp at q, induction q,
|
||||
have c = c', from !is_prop.elim, induction this,
|
||||
rewrite [▸*, is_prop_elimo_self (C a) c] },
|
||||
{ intro q, induction q, induction x with b c, rewrite [▸*, is_prop_elimo_self (C a) c] }
|
||||
end
|
||||
|
||||
definition sigma_ua {A B : Type} (C : A ≃ B → Type) :
|
||||
(Σ(p : A = B), C (equiv_of_eq p)) ≃ Σ(e : A ≃ B), C e :=
|
||||
sigma_equiv_sigma_left' !eq_equiv_equiv
|
||||
|
||||
-- definition sigma_pathover_equiv_of_is_prop {A : Type} {B : A → Type} {C : Πa, B a → Type}
|
||||
-- {a a' : A} {p : a = a'} {b : B a} {b' : B a'} {c : C a b} {c' : C a' b'}
|
||||
-- [Πa b, is_prop (C a b)] : ⟨b, c⟩ =[p] ⟨b', c'⟩ ≃ b =[p] b' :=
|
||||
-- begin
|
||||
-- fapply equiv.MK,
|
||||
-- { exact pathover_pr1 },
|
||||
-- { intro q, induction q, apply pathover_idp_of_eq, exact sigma_eq idp !is_prop.elimo },
|
||||
-- { intro q, induction q,
|
||||
-- have c = c', from !is_prop.elim, induction this,
|
||||
-- rewrite [▸*, is_prop_elimo_self (C a) c] },
|
||||
-- { esimp, generalize ⟨b, c⟩, intro x q, }
|
||||
-- end
|
||||
--rexact @(ap pathover_pr1) _ idpo _,
|
||||
|
||||
end sigma open sigma
|
||||
|
||||
namespace group
|
||||
open is_trunc
|
||||
|
||||
definition to_fun_isomorphism_trans {G H K : Group} (φ : G ≃g H) (ψ : H ≃g K) :
|
||||
φ ⬝g ψ ~ ψ ∘ φ :=
|
||||
by reflexivity
|
||||
|
||||
definition pmap_of_homomorphism_gid (G : Group) : pmap_of_homomorphism (gid G) ~* pid G :=
|
||||
begin
|
||||
fapply phomotopy_of_homotopy, reflexivity
|
||||
end
|
||||
|
||||
definition pmap_of_homomorphism_gcompose {G H K : Group} (ψ : H →g K) (φ : G →g H)
|
||||
: pmap_of_homomorphism (ψ ∘g φ) ~* pmap_of_homomorphism ψ ∘* pmap_of_homomorphism φ :=
|
||||
begin
|
||||
fapply phomotopy_of_homotopy, reflexivity
|
||||
end
|
||||
|
||||
definition pmap_of_homomorphism_phomotopy {G H : Group} {φ ψ : G →g H} (H : φ ~ ψ)
|
||||
: pmap_of_homomorphism φ ~* pmap_of_homomorphism ψ :=
|
||||
begin
|
||||
fapply phomotopy_of_homotopy, exact H
|
||||
end
|
||||
|
||||
definition pequiv_of_isomorphism_trans {G₁ G₂ G₃ : Group} (φ : G₁ ≃g G₂) (ψ : G₂ ≃g G₂) :
|
||||
pequiv_of_isomorphism (φ ⬝g ψ) ~* pequiv_of_isomorphism ψ ∘* pequiv_of_isomorphism φ :=
|
||||
begin
|
||||
apply phomotopy_of_homotopy, reflexivity
|
||||
end
|
||||
|
||||
definition isomorphism_eq {G H : Group} {φ ψ : G ≃g H} (p : φ ~ ψ) : φ = ψ :=
|
||||
begin
|
||||
induction φ with φ φe, induction ψ with ψ ψe,
|
||||
exact apd011 isomorphism.mk (homomorphism_eq p) !is_prop.elimo
|
||||
end
|
||||
|
||||
definition is_set_isomorphism [instance] (G H : Group) : is_set (G ≃g H) :=
|
||||
begin
|
||||
have H : G ≃g H ≃ Σ(f : G →g H), is_equiv f,
|
||||
begin
|
||||
fapply equiv.MK,
|
||||
{ intro φ, induction φ, constructor, assumption },
|
||||
{ intro v, induction v, constructor, assumption },
|
||||
{ intro v, induction v, reflexivity },
|
||||
{ intro φ, induction φ, reflexivity }
|
||||
end,
|
||||
apply is_trunc_equiv_closed_rev, exact H
|
||||
end
|
||||
|
||||
|
||||
-- definition is_equiv_isomorphism
|
||||
|
||||
|
||||
-- some extra instances for type class inference
|
||||
-- definition is_homomorphism_comm_homomorphism [instance] {G G' : AbGroup} (φ : G →g G')
|
||||
-- : @is_homomorphism G G' (@ab_group.to_group _ (AbGroup.struct G))
|
||||
|
@ -28,6 +320,18 @@ end group open group
|
|||
|
||||
namespace pi -- move to types.arrow
|
||||
|
||||
definition pmap_eq_equiv {X Y : Type*} (f g : X →* Y) : (f = g) ≃ (f ~* g) :=
|
||||
begin
|
||||
refine eq_equiv_fn_eq_of_equiv (@pmap.sigma_char X Y) f g ⬝e _,
|
||||
refine !sigma_eq_equiv ⬝e _,
|
||||
refine _ ⬝e (phomotopy.sigma_char f g)⁻¹ᵉ,
|
||||
fapply sigma_equiv_sigma,
|
||||
{ esimp, apply eq_equiv_homotopy },
|
||||
{ induction g with g gp, induction Y with Y y0, esimp, intro p, induction p, esimp at *,
|
||||
refine !pathover_idp ⬝e _, refine _ ⬝e !eq_equiv_eq_symm,
|
||||
apply equiv_eq_closed_right, exact !idp_con⁻¹ }
|
||||
end
|
||||
|
||||
definition pmap_eq_idp {X Y : Type*} (f : X →* Y) :
|
||||
pmap_eq (λx, idpath (f x)) !idp_con⁻¹ = idpath f :=
|
||||
begin
|
||||
|
@ -57,28 +361,38 @@ end pi open pi
|
|||
|
||||
namespace eq
|
||||
|
||||
infix ` ⬝hty `:75 := homotopy.trans
|
||||
postfix `⁻¹ʰᵗʸ`:(max+1) := homotopy.symm
|
||||
|
||||
definition hassoc {A B C D : Type} (h : C → D) (g : B → C) (f : A → B) : (h ∘ g) ∘ f ~ h ∘ (g ∘ f) :=
|
||||
λa, idp
|
||||
|
||||
-- to algebra.homotopy_group
|
||||
definition homotopy_group_homomorphism_pcompose (n : ℕ) [H : is_succ n] {A B C : Type*} (g : B →* C)
|
||||
(f : A →* B) : π→g[n] (g ∘* f) ~ π→g[n] g ∘ π→g[n] f :=
|
||||
begin
|
||||
induction H with n, exact to_homotopy (homotopy_group_functor_compose (succ n) g f)
|
||||
end
|
||||
|
||||
definition apn_pinv (n : ℕ) {A B : Type*} (f : A ≃* B) :
|
||||
Ω→[n] f⁻¹ᵉ* ~* (loopn_pequiv_loopn n f)⁻¹ᵉ* :=
|
||||
begin
|
||||
refine !to_pinv_pequiv_MK2⁻¹*
|
||||
end
|
||||
|
||||
-- definition homotopy_group_homomorphism_pinv (n : ℕ) {A B : Type*} (f : A ≃* B) :
|
||||
-- π→g[n+1] f⁻¹ᵉ* ~ (homotopy_group_isomorphism_of_pequiv n f)⁻¹ᵍ :=
|
||||
-- begin
|
||||
-- -- refine ptrunc_functor_phomotopy 0 !apn_pinv ⬝hty _,
|
||||
-- -- intro x, esimp,
|
||||
-- end
|
||||
|
||||
-- definition natural_square_tr_eq {A B : Type} {a a' : A} {f g : A → B}
|
||||
-- (p : f ~ g) (q : a = a') : natural_square p q = square_of_pathover (apd p q) :=
|
||||
-- idp
|
||||
|
||||
end eq open eq
|
||||
|
||||
namespace pointed
|
||||
|
||||
-- /- the pointed type of (unpointed) dependent maps -/
|
||||
-- definition pupi [constructor] {A : Type} (P : A → Type*) : Type* :=
|
||||
-- pointed.mk' (Πa, P a)
|
||||
|
||||
-- definition loop_pupi_commute {A : Type} (B : A → Type*) : Ω(pupi B) ≃* pupi (λa, Ω (B a)) :=
|
||||
-- pequiv_of_equiv eq_equiv_homotopy rfl
|
||||
|
||||
-- definition equiv_pupi_right {A : Type} {P Q : A → Type*} (g : Πa, P a ≃* Q a)
|
||||
-- : pupi P ≃* pupi Q :=
|
||||
-- pequiv_of_equiv (pi_equiv_pi_right g)
|
||||
-- begin esimp, apply eq_of_homotopy, intros a, esimp, exact (respect_pt (g a)) end
|
||||
|
||||
end pointed open pointed
|
||||
|
||||
namespace fiber
|
||||
|
||||
|
||||
|
@ -95,6 +409,46 @@ namespace fiber
|
|||
|
||||
end fiber
|
||||
|
||||
namespace is_conn
|
||||
|
||||
open unit trunc_index nat is_trunc pointed.ops
|
||||
|
||||
definition is_contr_of_trivial_homotopy' (n : ℕ₋₂) (A : Type) [is_trunc n A] [is_conn -1 A]
|
||||
(H : Πk a, is_contr (π[k] (pointed.MK A a))) : is_contr A :=
|
||||
begin
|
||||
assert aa : trunc -1 A,
|
||||
{ apply center },
|
||||
assert H3 : is_conn 0 A,
|
||||
{ induction aa with a, exact H 0 a },
|
||||
exact is_contr_of_trivial_homotopy n A H
|
||||
end
|
||||
|
||||
-- don't make is_prop_is_trunc an instance
|
||||
definition is_trunc_succ_is_trunc [instance] (n m : ℕ₋₂) (A : Type) : is_trunc (n.+1) (is_trunc m A) :=
|
||||
is_trunc_of_le _ !minus_one_le_succ
|
||||
|
||||
definition is_conn_of_trivial_homotopy (n : ℕ₋₂) (m : ℕ) (A : Type) [is_trunc n A] [is_conn 0 A]
|
||||
(H : Π(k : ℕ) a, k ≤ m → is_contr (π[k] (pointed.MK A a))) : is_conn m A :=
|
||||
begin
|
||||
apply is_contr_of_trivial_homotopy_nat m (trunc m A),
|
||||
intro k a H2,
|
||||
induction a with a,
|
||||
apply is_trunc_equiv_closed_rev,
|
||||
exact equiv_of_pequiv (homotopy_group_trunc_of_le (pointed.MK A a) _ _ H2),
|
||||
exact H k a H2
|
||||
end
|
||||
|
||||
definition is_conn_of_trivial_homotopy_pointed (n : ℕ₋₂) (m : ℕ) (A : Type*) [is_trunc n A]
|
||||
(H : Π(k : ℕ), k ≤ m → is_contr (π[k] A)) : is_conn m A :=
|
||||
begin
|
||||
have is_conn 0 A, proof H 0 !zero_le qed,
|
||||
apply is_conn_of_trivial_homotopy n m A,
|
||||
intro k a H2, revert a, apply is_conn.elim -1,
|
||||
cases A with A a, exact H k H2
|
||||
end
|
||||
|
||||
end is_conn
|
||||
|
||||
namespace circle
|
||||
|
||||
|
||||
|
@ -117,6 +471,262 @@ namespace circle
|
|||
|
||||
end circle
|
||||
|
||||
namespace susp
|
||||
|
||||
definition psusp_functor_phomotopy {A B : Type*} {f g : A →* B} (p : f ~* g) :
|
||||
psusp_functor f ~* psusp_functor g :=
|
||||
begin
|
||||
fapply phomotopy.mk,
|
||||
{ intro x, induction x,
|
||||
{ reflexivity },
|
||||
{ reflexivity },
|
||||
{ apply eq_pathover, apply hdeg_square, esimp, refine !elim_merid ⬝ _ ⬝ !elim_merid⁻¹ᵖ,
|
||||
exact ap merid (p a), }},
|
||||
{ reflexivity },
|
||||
end
|
||||
|
||||
definition psusp_functor_pid (A : Type*) : psusp_functor (pid A) ~* pid (psusp A) :=
|
||||
begin
|
||||
fapply phomotopy.mk,
|
||||
{ intro x, induction x,
|
||||
{ reflexivity },
|
||||
{ reflexivity },
|
||||
{ apply eq_pathover_id_right, apply hdeg_square, apply elim_merid }},
|
||||
{ reflexivity },
|
||||
end
|
||||
|
||||
definition psusp_functor_pcompose {A B C : Type*} (g : B →* C) (f : A →* B) :
|
||||
psusp_functor (g ∘* f) ~* psusp_functor g ∘* psusp_functor f :=
|
||||
begin
|
||||
fapply phomotopy.mk,
|
||||
{ intro x, induction x,
|
||||
{ reflexivity },
|
||||
{ reflexivity },
|
||||
{ apply eq_pathover, apply hdeg_square, esimp,
|
||||
refine !elim_merid ⬝ _ ⬝ (ap_compose (psusp_functor g) _ _)⁻¹ᵖ,
|
||||
refine _ ⬝ ap02 _ !elim_merid⁻¹, exact !elim_merid⁻¹ }},
|
||||
{ reflexivity },
|
||||
end
|
||||
|
||||
definition psusp_elim_psusp_functor {A B C : Type*} (g : B →* Ω C) (f : A →* B) :
|
||||
psusp.elim g ∘* psusp_functor f ~* psusp.elim (g ∘* f) :=
|
||||
begin
|
||||
refine !passoc ⬝* _, exact pwhisker_left _ !psusp_functor_pcompose⁻¹*
|
||||
end
|
||||
|
||||
definition psusp_elim_phomotopy {A B : Type*} {f g : A →* Ω B} (p : f ~* g) : psusp.elim f ~* psusp.elim g :=
|
||||
pwhisker_left _ (psusp_functor_phomotopy p)
|
||||
|
||||
definition psusp_elim_natural {X Y Z : Type*} (g : Y →* Z) (f : X →* Ω Y)
|
||||
: g ∘* psusp.elim f ~* psusp.elim (Ω→ g ∘* f) :=
|
||||
begin
|
||||
refine _ ⬝* pwhisker_left _ !psusp_functor_pcompose⁻¹*,
|
||||
refine !passoc⁻¹* ⬝* _ ⬝* !passoc,
|
||||
exact pwhisker_right _ !loop_psusp_counit_natural
|
||||
end
|
||||
|
||||
end susp
|
||||
|
||||
namespace category
|
||||
|
||||
-- replace precategory_group with precategory_Group (the former has a universe error)
|
||||
definition precategory_Group.{u} [instance] [constructor] : precategory.{u+1 u} Group :=
|
||||
begin
|
||||
fapply precategory.mk,
|
||||
{ exact λG H, G →g H },
|
||||
{ exact _ },
|
||||
{ exact λG H K ψ φ, ψ ∘g φ },
|
||||
{ exact λG, gid G },
|
||||
{ intros, apply homomorphism_eq, esimp },
|
||||
{ intros, apply homomorphism_eq, esimp },
|
||||
{ intros, apply homomorphism_eq, esimp }
|
||||
end
|
||||
|
||||
|
||||
definition precategory_AbGroup.{u} [instance] [constructor] : precategory.{u+1 u} AbGroup :=
|
||||
begin
|
||||
fapply precategory.mk,
|
||||
{ exact λG H, G →g H },
|
||||
{ exact _ },
|
||||
{ exact λG H K ψ φ, ψ ∘g φ },
|
||||
{ exact λG, gid G },
|
||||
{ intros, apply homomorphism_eq, esimp },
|
||||
{ intros, apply homomorphism_eq, esimp },
|
||||
{ intros, apply homomorphism_eq, esimp }
|
||||
end
|
||||
open iso
|
||||
definition Group_is_iso_of_is_equiv {G H : Group} (φ : G →g H) (H : is_equiv (group_fun φ)) :
|
||||
is_iso φ :=
|
||||
begin
|
||||
fconstructor,
|
||||
{ exact (isomorphism.mk φ H)⁻¹ᵍ },
|
||||
{ apply homomorphism_eq, rexact left_inv φ },
|
||||
{ apply homomorphism_eq, rexact right_inv φ }
|
||||
end
|
||||
|
||||
definition Group_is_equiv_of_is_iso {G H : Group} (φ : G ⟶ H) (Hφ : is_iso φ) :
|
||||
is_equiv (group_fun φ) :=
|
||||
begin
|
||||
fapply adjointify,
|
||||
{ exact group_fun φ⁻¹ʰ },
|
||||
{ note p := right_inverse φ, exact ap010 group_fun p },
|
||||
{ note p := left_inverse φ, exact ap010 group_fun p }
|
||||
end
|
||||
|
||||
definition Group_iso_equiv (G H : Group) : (G ≅ H) ≃ (G ≃g H) :=
|
||||
begin
|
||||
fapply equiv.MK,
|
||||
{ intro φ, induction φ with φ φi, constructor, exact Group_is_equiv_of_is_iso φ _ },
|
||||
{ intro v, induction v with φ φe, constructor, exact Group_is_iso_of_is_equiv φ _ },
|
||||
{ intro v, induction v with φ φe, apply isomorphism_eq, reflexivity },
|
||||
{ intro φ, induction φ with φ φi, apply iso_eq, reflexivity }
|
||||
end
|
||||
|
||||
definition Group_props.{u} {A : Type.{u}} (v : (A → A → A) × (A → A) × A) : Prop.{u} :=
|
||||
begin
|
||||
induction v with m v, induction v with i o,
|
||||
fapply trunctype.mk,
|
||||
{ exact is_set A × (Πa, m a o = a) × (Πa, m o a = a) × (Πa b c, m (m a b) c = m a (m b c)) ×
|
||||
(Πa, m (i a) a = o) },
|
||||
{ apply is_trunc_of_imp_is_trunc, intro v, induction v with H v,
|
||||
have is_prop (Πa, m a o = a), from _,
|
||||
have is_prop (Πa, m o a = a), from _,
|
||||
have is_prop (Πa b c, m (m a b) c = m a (m b c)), from _,
|
||||
have is_prop (Πa, m (i a) a = o), from _,
|
||||
apply is_trunc_prod }
|
||||
end
|
||||
|
||||
definition Group.sigma_char2.{u} : Group.{u} ≃
|
||||
Σ(A : Type.{u}) (v : (A → A → A) × (A → A) × A), Group_props v :=
|
||||
begin
|
||||
fapply equiv.MK,
|
||||
{ intro G, refine ⟨G, _⟩, induction G with G g, induction g with m s ma o om mo i mi,
|
||||
repeat (fconstructor; do 2 try assumption), },
|
||||
{ intro v, induction v with x v, induction v with y v, repeat induction y with x y,
|
||||
repeat induction v with x v, constructor, fconstructor, repeat assumption },
|
||||
{ intro v, induction v with x v, induction v with y v, repeat induction y with x y,
|
||||
repeat induction v with x v, reflexivity },
|
||||
{ intro v, repeat induction v with x v, reflexivity },
|
||||
end
|
||||
open is_trunc
|
||||
|
||||
section
|
||||
local attribute group.to_has_mul group.to_has_inv [coercion]
|
||||
|
||||
theorem inv_eq_of_mul_eq {A : Type} (G H : group A) (p : @mul A G ~2 @mul A H) :
|
||||
@inv A G ~ @inv A H :=
|
||||
begin
|
||||
have foo : Π(g : A), @inv A G g = (@inv A G g * g) * @inv A H g,
|
||||
from λg, !mul_inv_cancel_right⁻¹,
|
||||
cases G with Gm Gs Gh1 G1 Gh2 Gh3 Gi Gh4,
|
||||
cases H with Hm Hs Hh1 H1 Hh2 Hh3 Hi Hh4,
|
||||
change Gi ~ Hi, intro g, have p' : Gm ~2 Hm, from p,
|
||||
calc
|
||||
Gi g = Hm (Hm (Gi g) g) (Hi g) : foo
|
||||
... = Hm (Gm (Gi g) g) (Hi g) : by rewrite p'
|
||||
... = Hm G1 (Hi g) : by rewrite Gh4
|
||||
... = Gm G1 (Hi g) : by rewrite p'
|
||||
... = Hi g : Gh2
|
||||
end
|
||||
|
||||
theorem one_eq_of_mul_eq {A : Type} (G H : group A)
|
||||
(p : @mul A (group.to_has_mul G) ~2 @mul A (group.to_has_mul H)) :
|
||||
@one A (group.to_has_one G) = @one A (group.to_has_one H) :=
|
||||
begin
|
||||
cases G with Gm Gs Gh1 G1 Gh2 Gh3 Gi Gh4,
|
||||
cases H with Hm Hs Hh1 H1 Hh2 Hh3 Hi Hh4,
|
||||
exact (Hh2 G1)⁻¹ ⬝ (p H1 G1)⁻¹ ⬝ Gh3 H1,
|
||||
end
|
||||
end
|
||||
|
||||
open prod.ops
|
||||
definition group_of_Group_props.{u} {A : Type.{u}} {m : A → A → A} {i : A → A} {o : A}
|
||||
(H : Group_props (m, (i, o))) : group A :=
|
||||
⦃group, mul := m, inv := i, one := o, is_set_carrier := H.1,
|
||||
mul_one := H.2.1, one_mul := H.2.2.1, mul_assoc := H.2.2.2.1, mul_left_inv := H.2.2.2.2⦄
|
||||
|
||||
theorem Group_eq_equiv_lemma2 {A : Type} {m m' : A → A → A} {i i' : A → A} {o o' : A}
|
||||
(H : Group_props (m, (i, o))) (H' : Group_props (m', (i', o'))) :
|
||||
(m, (i, o)) = (m', (i', o')) ≃ (m ~2 m') :=
|
||||
begin
|
||||
have is_set A, from pr1 H,
|
||||
apply equiv_of_is_prop,
|
||||
{ intro p, exact apd100 (eq_pr1 p)},
|
||||
{ intro p, apply prod_eq (eq_of_homotopy2 p),
|
||||
apply prod_eq: esimp [Group_props] at *; esimp,
|
||||
{ apply eq_of_homotopy,
|
||||
exact inv_eq_of_mul_eq (group_of_Group_props H) (group_of_Group_props H') p },
|
||||
{ exact one_eq_of_mul_eq (group_of_Group_props H) (group_of_Group_props H') p }}
|
||||
end
|
||||
|
||||
open sigma.ops
|
||||
|
||||
theorem Group_eq_equiv_lemma {G H : Group}
|
||||
(p : (Group.sigma_char2 G).1 = (Group.sigma_char2 H).1) :
|
||||
((Group.sigma_char2 G).2 =[p] (Group.sigma_char2 H).2) ≃
|
||||
(is_homomorphism (equiv_of_eq (proof p qed : Group.carrier G = Group.carrier H))) :=
|
||||
begin
|
||||
refine !sigma_pathover_equiv_of_is_prop ⬝e _,
|
||||
induction G with G g, induction H with H h,
|
||||
esimp [Group.sigma_char2] at p, induction p,
|
||||
refine !pathover_idp ⬝e _,
|
||||
induction g with m s ma o om mo i mi, induction h with μ σ μa ε εμ με ι μι,
|
||||
exact Group_eq_equiv_lemma2 (Group.sigma_char2 (Group.mk G (group.mk m s ma o om mo i mi))).2.2
|
||||
(Group.sigma_char2 (Group.mk G (group.mk μ σ μa ε εμ με ι μι))).2.2
|
||||
end
|
||||
|
||||
definition isomorphism.sigma_char (G H : Group) : (G ≃g H) ≃ Σ(e : G ≃ H), is_homomorphism e :=
|
||||
begin
|
||||
fapply equiv.MK,
|
||||
{ intro φ, exact ⟨equiv_of_isomorphism φ, to_respect_mul φ⟩ },
|
||||
{ intro v, induction v with e p, exact isomorphism_of_equiv e p },
|
||||
{ intro v, induction v with e p, induction e, reflexivity },
|
||||
{ intro φ, induction φ with φ H, induction φ, reflexivity },
|
||||
end
|
||||
|
||||
definition Group_eq_equiv (G H : Group) : G = H ≃ (G ≃g H) :=
|
||||
begin
|
||||
refine (eq_equiv_fn_eq_of_equiv Group.sigma_char2 G H) ⬝e _,
|
||||
refine !sigma_eq_equiv ⬝e _,
|
||||
refine sigma_equiv_sigma_right Group_eq_equiv_lemma ⬝e _,
|
||||
transitivity (Σ(e : (Group.sigma_char2 G).1 ≃ (Group.sigma_char2 H).1),
|
||||
@is_homomorphism _ _ _ _ (to_fun e)), apply sigma_ua,
|
||||
exact !isomorphism.sigma_char⁻¹ᵉ
|
||||
end
|
||||
|
||||
definition to_fun_Group_eq_equiv {G H : Group} (p : G = H)
|
||||
: Group_eq_equiv G H p ~ isomorphism_of_eq p :=
|
||||
begin
|
||||
induction p, reflexivity
|
||||
end
|
||||
|
||||
definition Group_eq2 {G H : Group} {p q : G = H}
|
||||
(r : isomorphism_of_eq p ~ isomorphism_of_eq q) : p = q :=
|
||||
begin
|
||||
apply eq_of_fn_eq_fn (Group_eq_equiv G H),
|
||||
apply isomorphism_eq,
|
||||
intro g, refine to_fun_Group_eq_equiv p g ⬝ r g ⬝ (to_fun_Group_eq_equiv q g)⁻¹,
|
||||
end
|
||||
|
||||
definition Group_eq_equiv_Group_iso (G₁ G₂ : Group) : G₁ = G₂ ≃ G₁ ≅ G₂ :=
|
||||
Group_eq_equiv G₁ G₂ ⬝e (Group_iso_equiv G₁ G₂)⁻¹ᵉ
|
||||
|
||||
definition category_Group.{u} : category Group.{u} :=
|
||||
category.mk precategory_Group
|
||||
begin
|
||||
intro G H,
|
||||
apply is_equiv_of_equiv_of_homotopy (Group_eq_equiv_Group_iso G H),
|
||||
intro p, induction p, fapply iso_eq, apply homomorphism_eq, reflexivity
|
||||
end
|
||||
|
||||
definition category_AbGroup : category AbGroup :=
|
||||
category.mk precategory_AbGroup sorry
|
||||
|
||||
definition Grp.{u} [constructor] : Category := category.Mk Group.{u} category_Group
|
||||
definition AbGrp [constructor] : Category := category.Mk AbGroup category_AbGroup
|
||||
|
||||
end category
|
||||
|
||||
namespace sphere
|
||||
|
||||
-- definition constant_sphere_map_sphere {n m : ℕ} (H : n < m) (f : S* n →* S* m) :
|
||||
|
@ -131,7 +741,7 @@ namespace sphere
|
|||
|
||||
end sphere
|
||||
|
||||
definition image_pathover {A B : Type} (f : A → B) {x y : B} (p : x = y) (u : image f x) (v : image f y) : u =[p] v :=
|
||||
definition image_pathover {A B : Type} (f : A → B) {x y : B} (p : x = y) (u : image f x) (v : image f y) : u =[p] v :=
|
||||
begin
|
||||
apply is_prop.elimo
|
||||
end
|
||||
|
@ -149,7 +759,7 @@ definition is_embedding_factor : is_embedding h → is_embedding f :=
|
|||
fapply is_embedding_of_is_injective,
|
||||
intro x y p,
|
||||
fapply @is_injective_of_is_embedding _ _ _ E _ _ (ap g p)
|
||||
end
|
||||
end
|
||||
|
||||
definition is_surjective_factor : is_surjective h → is_surjective g :=
|
||||
begin
|
||||
|
|
Loading…
Reference in a new issue