ab_subgroup_iso
This commit is contained in:
parent
eaf7290def
commit
8382043184
1 changed files with 16 additions and 0 deletions
|
@ -469,6 +469,22 @@ definition ab_image_lift [constructor] {G H : AbGroup} (f : G →g H) : G →g i
|
|||
fapply is_embedding_subgroup_of_subgroup_incl,
|
||||
end
|
||||
|
||||
definition ab_subgroup_iso {A : AbGroup} {R S : subgroup_rel A} (H : Π (a : A), R a -> S a) (K : Π (a : A), S a -> R a) :
|
||||
ab_subgroup R ≃g ab_subgroup S :=
|
||||
begin
|
||||
fapply isomorphism.mk,
|
||||
exact subgroup_of_subgroup_incl H,
|
||||
fapply is_equiv.adjointify,
|
||||
exact subgroup_of_subgroup_incl K,
|
||||
intro s, induction s with a p, fapply subtype_eq, reflexivity,
|
||||
intro r, induction r with a p, fapply subtype_eq, reflexivity
|
||||
end
|
||||
|
||||
definition ab_subgroup_iso_triangle {A : AbGroup} {R S : subgroup_rel A} (H : Π (a : A), R a -> S a) (K : Π (a : A), S a -> R a) : incl_of_subgroup R ~ incl_of_subgroup S ∘g ab_subgroup_iso H K :=
|
||||
begin
|
||||
intro r, induction r, reflexivity
|
||||
end
|
||||
|
||||
end group
|
||||
|
||||
open group
|
||||
|
|
Loading…
Reference in a new issue