diff --git a/homotopy/spectrum.hlean b/homotopy/spectrum.hlean index 0f6a3b6..4f15ade 100644 --- a/homotopy/spectrum.hlean +++ b/homotopy/spectrum.hlean @@ -1,11 +1,12 @@ /- Copyright (c) 2016 Michael Shulman. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. -Authors: Michael Shulman, Floris van Doorn, Stefano Piceghello, Yuri Sulyma +Authors: Michael Shulman, Floris van Doorn, Egbert Rijke, Stefano Piceghello, Yuri Sulyma -/ -import homotopy.LES_of_homotopy_groups .splice ..colim types.pointed2 .EM ..pointed_pi .smash_adjoint ..algebra.seq_colim .fwedge +import homotopy.LES_of_homotopy_groups .splice ..colim types.pointed2 .EM ..pointed_pi .smash_adjoint ..algebra.seq_colim .fwedge .pointed_cubes + open eq nat int susp pointed pmap sigma is_equiv equiv fiber algebra trunc trunc_index pi group seq_colim succ_str EM EM.ops function @@ -148,15 +149,17 @@ namespace spectrum -- A version of 'glue_square' in the spectrum case that uses 'equiv_glue' definition sglue_square {N : succ_str} {E F : gen_spectrum N} (f : E →ₛ F) (n : N) - : equiv_glue F n ∘* f n ~* Ω→ (f (S n)) ∘* equiv_glue E n - -- I guess this manual eta-expansion is necessary because structures lack definitional eta? - := phomotopy.mk (glue_square f n) (to_homotopy_pt (glue_square f n)) + : psquare (f n) (Ω→ (f (S n))) (equiv_glue E n) (equiv_glue F n) := + glue_square f n definition sid [constructor] [refl] {N : succ_str} (E : gen_prespectrum N) : E →ₛ E := - smap.mk (λn, pid (E n)) - (λn, calc glue E n ∘* pid (E n) ~* glue E n : pcompose_pid - ... ~* pid (Ω(E (S n))) ∘* glue E n : pid_pcompose - ... ~* Ω→(pid (E (S n))) ∘* glue E n : pwhisker_right (glue E n) ap1_pid⁻¹*) + smap.mk (λ n, pid (E n)) (λ n, psquare_of_phtpy_bot (ap1_pid) (psquare_of_pid_top_bot (phomotopy.rfl))) + + print sid + -- smap.mk (λn, pid (E n)) + -- (λn, calc glue E n ∘* pid (E n) ~* glue E n : pcompose_pid + -- ... ~* pid (Ω(E (S n))) ∘* glue E n : pid_pcompose + -- ... ~* Ω→(pid (E (S n))) ∘* glue E n : pwhisker_right (glue E n) ap1_pid⁻¹*) definition scompose [trans] {N : succ_str} {X Y Z : gen_prespectrum N} (g : Y →ₛ Z) (f : X →ₛ Y) : X →ₛ Z :=