fix(*): fix broken files
This commit is contained in:
parent
6889eba5ea
commit
895050d155
3 changed files with 4 additions and 10 deletions
|
@ -13,17 +13,11 @@ Basic group theory
|
|||
The only relevant defintions are the trivial group (in types/unit) and some files in algebra/
|
||||
-/
|
||||
|
||||
<<<<<<< HEAD
|
||||
import algebra.group types.pointed types.pi
|
||||
|
||||
open eq algebra pointed function is_trunc pi
|
||||
|
||||
=======
|
||||
import types.pointed types.pi algebra.bundled algebra.category.category
|
||||
|
||||
open eq algebra pointed function is_trunc pi category equiv is_equiv
|
||||
set_option class.force_new true
|
||||
>>>>>>> origin/master
|
||||
|
||||
namespace group
|
||||
|
||||
definition pointed_Group [instance] (G : Group) : pointed G := pointed.mk one
|
||||
|
|
|
@ -356,7 +356,7 @@ namespace group
|
|||
|
||||
end
|
||||
end free_group open free_group
|
||||
export [reduce_hints] free_group
|
||||
-- export [reduce_hints] free_group
|
||||
variables (X)
|
||||
definition group_free_group [constructor] : group (free_group_carrier X) :=
|
||||
group.mk free_group_mul _ free_group_mul_assoc free_group_one free_group_one_mul free_group_mul_one
|
||||
|
|
|
@ -3,7 +3,7 @@ Copyright (c) 2015 Ulrik Buchholtz. All rights reserved.
|
|||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Ulrik Buchholtz
|
||||
-/
|
||||
import types.trunc types.arrow_2 types.fiber .susp
|
||||
import types.trunc types.arrow_2 types.fiber homotopy.susp
|
||||
|
||||
open eq is_trunc is_equiv nat equiv trunc function fiber
|
||||
|
||||
|
@ -153,7 +153,7 @@ namespace homotopy
|
|||
-- Corollary 7.5.5
|
||||
definition is_conn_homotopy (n : trunc_index) {A B : Type} {f g : A → B}
|
||||
(p : f ~ g) (H : is_conn_map n f) : is_conn_map n g :=
|
||||
@retract_of_conn_is_conn _ _ (arrow.arrow_hom_of_homotopy p) (arrow.is_retraction_arrow_hom_of_homotopy p) n H
|
||||
@retract_of_conn_is_conn _ _ (arrow.arrow_hom_of_homotopy p) (arrow.is_retraction_arrow_hom_of_homotopy p) n H
|
||||
|
||||
-- all types are -2-connected
|
||||
definition minus_two_conn [instance] (A : Type) : is_conn -2 A :=
|
||||
|
|
Loading…
Reference in a new issue