add is_short_exact.hlean
This commit is contained in:
parent
78512444e8
commit
89d65b1dca
1 changed files with 22 additions and 0 deletions
22
algebra/is_short_exact.hlean
Normal file
22
algebra/is_short_exact.hlean
Normal file
|
@ -0,0 +1,22 @@
|
|||
/-
|
||||
Copyright (c) 2017 Jeremy Avigad. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Jeremy Avigad
|
||||
|
||||
Short exact sequences
|
||||
-/
|
||||
import .quotient_group
|
||||
open eq nat int susp pointed pmap sigma is_equiv equiv fiber algebra trunc trunc_index pi group
|
||||
is_trunc function sphere unit sum prod
|
||||
|
||||
structure is_short_exact {A B : Type} {C : Type*} (f : A → B) (g : B → C) :=
|
||||
(is_emb : is_embedding f)
|
||||
(im_in_ker : Π(a:A), g (f a) = pt)
|
||||
(ker_in_im : Π(b:B), (g b = pt) → image f b)
|
||||
(is_surj : is_surjective g)
|
||||
|
||||
structure is_short_exact_t {A B : Type} {C : Type*} (f : A → B) (g : B → C) :=
|
||||
(is_emb : is_embedding f)
|
||||
(im_in_ker : Π(a:A), g (f a) = pt)
|
||||
(ker_in_im : Π(b:B), (g b = pt) → fiber f b)
|
||||
is_surj : is_split_surjective g)
|
Loading…
Reference in a new issue