checkpoint, submodules
This commit is contained in:
parent
d828120216
commit
93126a9c2b
3 changed files with 17 additions and 8 deletions
|
@ -64,7 +64,7 @@ namespace group
|
|||
refine dirsum.rec _ _ _,
|
||||
exact h,
|
||||
refine !to_respect_zero ⬝ !to_respect_zero⁻¹,
|
||||
intro g₁ g₂ h₁ h₂, rewrite [+ to_respect_add, h₁, h₂]
|
||||
intro g₁ g₂ h₁ h₂, rewrite [+ to_respect_add', h₁, h₂]
|
||||
end
|
||||
|
||||
definition dirsum_elim_resp_quotient (f : Πi, Y i →a A') (g : dirsum_carrier)
|
||||
|
@ -72,7 +72,7 @@ namespace group
|
|||
begin
|
||||
induction r with r, induction r,
|
||||
rewrite [to_respect_add, to_respect_neg], apply add_neg_eq_of_eq_add,
|
||||
rewrite [zero_add, to_respect_add, ▸*, ↑foldl, +one_mul, to_respect_add]
|
||||
rewrite [zero_add, to_respect_add, ▸*, ↑foldl, +one_mul, to_respect_add']
|
||||
end
|
||||
|
||||
definition dirsum_elim [constructor] (f : Πi, Y i →a A') : dirsum →a A' :=
|
||||
|
|
|
@ -155,7 +155,7 @@ variables {J : Set} (N : graded_module R J)
|
|||
definition dirsum' : AddAbGroup :=
|
||||
group.dirsum (λj, AddAbGroup_of_LeftModule (N j))
|
||||
variable {N}
|
||||
definition dirsum_smul [constructor] (r : R) : dirsum' N →g dirsum' N :=
|
||||
definition dirsum_smul [constructor] (r : R) : dirsum' N →a dirsum' N :=
|
||||
dirsum_functor (λi, smul_homomorphism (N i) r)
|
||||
|
||||
definition dirsum_smul_right_distrib (r s : R) (n : dirsum' N) :
|
||||
|
@ -165,13 +165,17 @@ begin
|
|||
intro i ni, exact to_smul_right_distrib r s ni
|
||||
end
|
||||
|
||||
definition dirsum_mul_smul (r s : R) (n : dirsum' N) :
|
||||
dirsum_smul (r * s) n = dirsum_smul r (dirsum_smul s n) :=
|
||||
definition dirsum_mul_smul' (r s : R) (n : dirsum' N) :
|
||||
dirsum_smul (r * s) n = (dirsum_smul r ∘a dirsum_smul s) n :=
|
||||
begin
|
||||
refine dirsum_functor_homotopy _ n ⬝ !dirsum_functor_compose⁻¹,
|
||||
refine dirsum_functor_homotopy _ n ⬝ (dirsum_functor_compose _ _ n)⁻¹ᵖ,
|
||||
intro i ni, exact to_mul_smul r s ni
|
||||
end
|
||||
|
||||
definition dirsum_mul_smul (r s : R) (n : dirsum' N) :
|
||||
dirsum_smul (r * s) n = dirsum_smul r (dirsum_smul s n) :=
|
||||
proof dirsum_mul_smul' r s n qed
|
||||
|
||||
definition dirsum_one_smul (n : dirsum' N) : dirsum_smul 1 n = n :=
|
||||
begin
|
||||
refine dirsum_functor_homotopy _ n ⬝ !dirsum_functor_gid,
|
||||
|
|
|
@ -43,6 +43,11 @@ namespace algebra
|
|||
definition Set_of_AddGroup [reducible] [constructor] : AddGroup → Set :=
|
||||
algebra._trans_of_pSet_of_AddGroup_2
|
||||
|
||||
-- --
|
||||
-- definition Group_of_AddAbGroup [coercion] [constructor] (G : AddAbGroup) : Group :=
|
||||
-- AddGroup.mk G _
|
||||
-- --
|
||||
|
||||
definition AddGroup_of_AddAbGroup [coercion] [constructor] (G : AddAbGroup) : AddGroup :=
|
||||
AddGroup.mk G _
|
||||
|
||||
|
@ -515,13 +520,13 @@ namespace group
|
|||
definition add_homomorphism (G H : AddGroup) : Type := homomorphism G H
|
||||
infix ` →a `:55 := add_homomorphism
|
||||
|
||||
definition agroup_fun [coercion] {G H : AddGroup} (φ : G →a H) : G → H :=
|
||||
definition agroup_fun [coercion] [unfold 3] [reducible] {G H : AddGroup} (φ : G →a H) : G → H :=
|
||||
φ
|
||||
|
||||
definition add_homomorphism.struct [instance] {G H : AddGroup} (φ : G →a H) : is_add_hom φ :=
|
||||
homomorphism.addstruct φ
|
||||
|
||||
definition add_homomorphism.mk [constructor] {G H : AddGroup} (φ : G → H) (h : is_add_hom φ) : G →a H :=
|
||||
definition add_homomorphism.mk [constructor] {G H : AddGroup} (φ : G → H) (h : is_add_hom φ) : G →g H :=
|
||||
homomorphism.mk φ h
|
||||
|
||||
definition add_homomorphism_compose [constructor] [trans] {G₁ G₂ G₃ : AddGroup}
|
||||
|
|
Loading…
Reference in a new issue