complete psigma_gen_functor_psquare
This commit is contained in:
parent
83f7761d31
commit
969906d480
2 changed files with 20 additions and 11 deletions
|
@ -387,6 +387,12 @@ namespace sigma
|
|||
change_path (ap_sigma_pr1 f g p)⁻¹ (pathover_ap C f (apd g p)) :=
|
||||
by induction p; reflexivity
|
||||
|
||||
-- open sigma.ops
|
||||
-- definition eq.rec_sigma {A : Type} {B : A → Type} {a₀ : A} {b₀ : B a₀}
|
||||
-- {P : Π(a : A) (b : B a), ⟨a₀, b₀⟩ = ⟨a, b⟩ → Type} (H : P a₀ b₀ idp) {a : A} {b : B a}
|
||||
-- (p : ⟨a₀, b₀⟩ = ⟨a, b⟩) : P a b p :=
|
||||
-- sorry
|
||||
|
||||
-- definition sigma_pathover_equiv_of_is_prop {A : Type} {B : A → Type} {C : Πa, B a → Type}
|
||||
-- {a a' : A} {p : a = a'} {b : B a} {b' : B a'} {c : C a b} {c' : C a' b'}
|
||||
-- [Πa b, is_prop (C a b)] : ⟨b, c⟩ =[p] ⟨b', c'⟩ ≃ b =[p] b' :=
|
||||
|
|
|
@ -189,11 +189,6 @@ namespace pointed
|
|||
Ω (psigma_gen B b₀) ≃* @psigma_gen (Ω A) (λp, pathover B b₀ p b₀) idpo :=
|
||||
pequiv_of_equiv (sigma_eq_equiv pt pt) idp
|
||||
|
||||
-- open sigma.ops
|
||||
-- definition eq.rec_sigma {A : Type} {B : A → Type} {a₀ : A} {b₀ : B a₀}
|
||||
-- {P : Π(a : A) (b : B a), ⟨a₀, b₀⟩ = ⟨a, b⟩ → Type} (H : P a₀ b₀ idp) {a : A} {b : B a}
|
||||
-- (p : ⟨a₀, b₀⟩ = ⟨a, b⟩) : P a b p :=
|
||||
-- sorry
|
||||
open sigma.ops
|
||||
definition ap1_gen_sigma {A A' : Type} {B : A → Type} {B' : A' → Type}
|
||||
{x₀ x₁ : Σa, B a} {a₀' a₁' : A'} {b₀' : B' a₀'} {b₁' : B' a₁'} (f : A → A')
|
||||
|
@ -215,8 +210,7 @@ namespace pointed
|
|||
begin
|
||||
fapply phomotopy.mk,
|
||||
{ exact ap1_gen_sigma f (respect_pt f) (respect_pt f) g p p },
|
||||
{ induction f with f f₀, induction A' with A' a₀', esimp at * ⊢,
|
||||
induction p, reflexivity }
|
||||
{ induction f with f f₀, induction A' with A' a₀', esimp at * ⊢, induction p, reflexivity }
|
||||
end
|
||||
|
||||
definition psigma_gen_functor_pcompose [constructor] {A₁ A₂ A₃ : Type*}
|
||||
|
@ -243,10 +237,17 @@ namespace pointed
|
|||
{p₁ : pathover B₂ (g₁ b₁) (respect_pt f₁) b₂} {p₂ : pathover B₂ (g₂ b₁) (respect_pt f₂) b₂}
|
||||
(h₁ : f₁ ~* f₂)
|
||||
(h₂ : Π⦃a⦄ (b : B₁ a), pathover B₂ (g₁ b) (h₁ a) (g₂ b))
|
||||
(h₃ : change_path (to_homotopy_pt h₁)⁻¹ p₁ = h₂ b₁ ⬝o p₂) :
|
||||
(h₃ : squareover B₂ (square_of_eq (to_homotopy_pt h₁)⁻¹) p₁ p₂ (h₂ b₁) idpo) :
|
||||
psigma_gen_functor f₁ g₁ p₁ ~* psigma_gen_functor f₂ g₂ p₂ :=
|
||||
begin
|
||||
exact sorry
|
||||
induction h₁ using phomotopy_rec_on_idp,
|
||||
fapply phomotopy.mk,
|
||||
{ intro x, induction x with a b, exact ap (dpair (f₁ a)) (eq_of_pathover_idp (h₂ b)) },
|
||||
{ induction f₁ with f f₀, induction A₂ with A₂ a₂₀, esimp at * ⊢,
|
||||
induction f₀, esimp, induction p₂ using idp_rec_on,
|
||||
rewrite [to_right_inv !eq_con_inv_equiv_con_eq at h₃],
|
||||
have h₂ b₁ = p₁, from (eq_top_of_squareover h₃)⁻¹, induction this,
|
||||
refine !ap_dpair ⬝ ap (sigma_eq _) _, exact to_left_inv !pathover_idp (h₂ b₁) }
|
||||
end
|
||||
|
||||
definition psigma_gen_functor_psquare [constructor] {A₀₀ A₀₂ A₂₀ A₂₂ : Type*}
|
||||
|
@ -261,14 +262,16 @@ namespace pointed
|
|||
{p₁₂ : pathover B₂₂ (g₁₂ b₀₂) (respect_pt f₁₂) b₂₂}
|
||||
(h₁ : psquare f₁₀ f₁₂ f₀₁ f₂₁)
|
||||
(h₂ : Π⦃a⦄ (b : B₀₀ a), pathover B₂₂ (g₂₁ (g₁₀ b)) (h₁ a) (g₁₂ (g₀₁ b)))
|
||||
(h₃ : squareover B₂₂ (square_of_eq (!con_idp ⬝ (to_homotopy_pt h₁)⁻¹))
|
||||
(h₃ : squareover B₂₂ (square_of_eq (to_homotopy_pt h₁)⁻¹)
|
||||
(pathover_ap B₂₂ f₂₁ (apo g₂₁ p₁₀) ⬝o p₂₁)
|
||||
(pathover_ap B₂₂ f₁₂ (apo g₁₂ p₀₁) ⬝o p₁₂)
|
||||
(h₂ b₀₀) idpo) :
|
||||
psquare (psigma_gen_functor f₁₀ g₁₀ p₁₀) (psigma_gen_functor f₁₂ g₁₂ p₁₂)
|
||||
(psigma_gen_functor f₀₁ g₀₁ p₀₁) (psigma_gen_functor f₂₁ g₂₁ p₂₁) :=
|
||||
proof
|
||||
!psigma_gen_functor_pcompose⁻¹* ⬝* sorry ⬝* !psigma_gen_functor_pcompose
|
||||
!psigma_gen_functor_pcompose⁻¹* ⬝*
|
||||
psigma_gen_functor_phomotopy h₁ h₂ h₃ ⬝*
|
||||
!psigma_gen_functor_pcompose
|
||||
qed
|
||||
|
||||
|
||||
|
|
Loading…
Reference in a new issue