fix indexing of abutment in spectral sequences
This commit is contained in:
parent
48cf8a5f31
commit
96e11300ed
2 changed files with 46 additions and 44 deletions
|
@ -594,7 +594,7 @@ namespace left_module
|
||||||
|
|
||||||
definition Z2 [constructor] : AddAbGroup := agℤ ×aa agℤ
|
definition Z2 [constructor] : AddAbGroup := agℤ ×aa agℤ
|
||||||
|
|
||||||
structure converges_to.{u v w} {R : Ring} (E' : agℤ → agℤ → LeftModule.{u v} R)
|
structure convergent_exact_couple.{u v w} {R : Ring} (E' : agℤ → agℤ → LeftModule.{u v} R)
|
||||||
(Dinf : agℤ → LeftModule.{u w} R) : Type.{max u (v+1) (w+1)} :=
|
(Dinf : agℤ → LeftModule.{u w} R) : Type.{max u (v+1) (w+1)} :=
|
||||||
(X : exact_couple.{u 0 w v} R Z2)
|
(X : exact_couple.{u 0 w v} R Z2)
|
||||||
(HH : is_bounded X)
|
(HH : is_bounded X)
|
||||||
|
@ -605,15 +605,15 @@ namespace left_module
|
||||||
(deg_d1 : ℕ → agℤ) (deg_d2 : ℕ → agℤ)
|
(deg_d1 : ℕ → agℤ) (deg_d2 : ℕ → agℤ)
|
||||||
(deg_d_eq0 : Π(r : ℕ), deg (d (page X r)) 0 = (deg_d1 r, deg_d2 r))
|
(deg_d_eq0 : Π(r : ℕ), deg (d (page X r)) 0 = (deg_d1 r, deg_d2 r))
|
||||||
|
|
||||||
infix ` ⟹ `:25 := converges_to
|
infix ` ⟹ `:25 := convergent_exact_couple
|
||||||
|
|
||||||
definition converges_to_g [reducible] (E' : agℤ → agℤ → AbGroup) (Dinf : agℤ → AbGroup) : Type :=
|
definition convergent_exact_couple_g [reducible] (E' : agℤ → agℤ → AbGroup) (Dinf : agℤ → AbGroup) : Type :=
|
||||||
(λn s, LeftModule_int_of_AbGroup (E' n s)) ⟹ (λn, LeftModule_int_of_AbGroup (Dinf n))
|
(λn s, LeftModule_int_of_AbGroup (E' n s)) ⟹ (λn, LeftModule_int_of_AbGroup (Dinf n))
|
||||||
|
|
||||||
infix ` ⟹ᵍ `:25 := converges_to_g
|
infix ` ⟹ᵍ `:25 := convergent_exact_couple_g
|
||||||
|
|
||||||
section
|
section
|
||||||
open converges_to
|
open convergent_exact_couple
|
||||||
parameters {R : Ring} {E' : agℤ → agℤ → LeftModule R} {Dinf : agℤ → LeftModule R} (c : E' ⟹ Dinf)
|
parameters {R : Ring} {E' : agℤ → agℤ → LeftModule R} {Dinf : agℤ → LeftModule R} (c : E' ⟹ Dinf)
|
||||||
local abbreviation X := X c
|
local abbreviation X := X c
|
||||||
local abbreviation i := i X
|
local abbreviation i := i X
|
||||||
|
@ -631,19 +631,18 @@ namespace left_module
|
||||||
(deg (d (page X r)))⁻¹ᵉ (n, s) = (n - deg_d1 c r, s - deg_d2 c r) :=
|
(deg (d (page X r)))⁻¹ᵉ (n, s) = (n - deg_d1 c r, s - deg_d2 c r) :=
|
||||||
inv_eq_of_eq (!deg_d_eq ⬝ prod_eq !sub_add_cancel !sub_add_cancel)⁻¹
|
inv_eq_of_eq (!deg_d_eq ⬝ prod_eq !sub_add_cancel !sub_add_cancel)⁻¹
|
||||||
|
|
||||||
definition converges_to_isomorphism {E'' : agℤ → agℤ → LeftModule R} {Dinf' : graded_module R agℤ}
|
definition convergent_exact_couple_isomorphism {E'' : agℤ → agℤ → LeftModule R} {Dinf' : graded_module R agℤ}
|
||||||
(e' : Πn s, E' n s ≃lm E'' n s) (f' : Πn, Dinf n ≃lm Dinf' n) : E'' ⟹ Dinf' :=
|
(e' : Πn s, E' n s ≃lm E'' n s) (f' : Πn, Dinf n ≃lm Dinf' n) : E'' ⟹ Dinf' :=
|
||||||
converges_to.mk X HH s₁ s₂ (HB c)
|
convergent_exact_couple.mk X HH s₁ s₂ (HB c)
|
||||||
begin intro x, induction x with n s, exact e c (n, s) ⬝lm e' n s end
|
begin intro x, induction x with n s, exact e c (n, s) ⬝lm e' n s end
|
||||||
(λn, f c n ⬝lm f' n)
|
(λn, f c n ⬝lm f' n)
|
||||||
(deg_d1 c) (deg_d2 c) (λr, deg_d_eq0 c r)
|
(deg_d1 c) (deg_d2 c) (λr, deg_d_eq0 c r)
|
||||||
|
|
||||||
|
|
||||||
include c
|
include c
|
||||||
definition converges_to_reindex (i : agℤ ×ag agℤ ≃g agℤ ×ag agℤ) :
|
definition convergent_exact_couple_reindex (i : agℤ ×ag agℤ ≃g agℤ ×ag agℤ) :
|
||||||
(λp q, E' (i (p, q)).1 (i (p, q)).2) ⟹ (λn, Dinf n) :=
|
(λp q, E' (i (p, q)).1 (i (p, q)).2) ⟹ Dinf :=
|
||||||
begin
|
begin
|
||||||
fapply converges_to.mk (exact_couple_reindex i X) (is_bounded_reindex i HH),
|
fapply convergent_exact_couple.mk (exact_couple_reindex i X) (is_bounded_reindex i HH),
|
||||||
{ exact λn, (i⁻¹ᵍ (s₁ n, s₂ n)).1 },
|
{ exact λn, (i⁻¹ᵍ (s₁ n, s₂ n)).1 },
|
||||||
{ exact λn, (i⁻¹ᵍ (s₁ n, s₂ n)).2 },
|
{ exact λn, (i⁻¹ᵍ (s₁ n, s₂ n)).2 },
|
||||||
{ intro n, refine ap (B' HH) _ ⬝ HB c n,
|
{ intro n, refine ap (B' HH) _ ⬝ HB c n,
|
||||||
|
@ -658,32 +657,36 @@ namespace left_module
|
||||||
{ intro r, esimp, refine !deg_d_reindex ⬝ ap i⁻¹ᵍ (ap (deg (d _)) (group.to_respect_zero i) ⬝
|
{ intro r, esimp, refine !deg_d_reindex ⬝ ap i⁻¹ᵍ (ap (deg (d _)) (group.to_respect_zero i) ⬝
|
||||||
deg_d_eq0 c r) ⬝ !prod.eta⁻¹ }
|
deg_d_eq0 c r) ⬝ !prod.eta⁻¹ }
|
||||||
end
|
end
|
||||||
|
|
||||||
|
definition convergent_exact_couple_negate_inf : E' ⟹ (λn, Dinf (-n)) :=
|
||||||
|
convergent_exact_couple.mk X HH (s₁ ∘ neg) (s₂ ∘ neg) (λn, HB c (-n)) (e c) (λn, f c (-n))
|
||||||
|
(deg_d1 c) (deg_d2 c) (deg_d_eq0 c)
|
||||||
omit c
|
omit c
|
||||||
|
|
||||||
/- definition converges_to_reindex {E'' : agℤ → agℤ → LeftModule R} {Dinf' : graded_module R agℤ}
|
/- definition convergent_exact_couple_reindex {E'' : agℤ → agℤ → LeftModule R} {Dinf' : graded_module R agℤ}
|
||||||
(i : agℤ ×g agℤ ≃ agℤ × agℤ) (e' : Πp q, E' p q ≃lm E'' (i (p, q)).1 (i (p, q)).2)
|
(i : agℤ ×g agℤ ≃ agℤ × agℤ) (e' : Πp q, E' p q ≃lm E'' (i (p, q)).1 (i (p, q)).2)
|
||||||
(i2 : agℤ ≃ agℤ) (f' : Πn, Dinf n ≃lm Dinf' (i2 n)) :
|
(i2 : agℤ ≃ agℤ) (f' : Πn, Dinf n ≃lm Dinf' (i2 n)) :
|
||||||
(λp q, E'' p q) ⟹ λn, Dinf' n :=
|
(λp q, E'' p q) ⟹ λn, Dinf' n :=
|
||||||
converges_to.mk (exact_couple_reindex i X) (is_bounded_reindex i HH) s₁ s₂
|
convergent_exact_couple.mk (exact_couple_reindex i X) (is_bounded_reindex i HH) s₁ s₂
|
||||||
sorry --(λn, ap (B' HH) (to_right_inv i _ ⬝ begin end) ⬝ HB c n)
|
sorry --(λn, ap (B' HH) (to_right_inv i _ ⬝ begin end) ⬝ HB c n)
|
||||||
sorry --begin intro x, induction x with p q, exact e c (p, q) ⬝lm e' p q end
|
sorry --begin intro x, induction x with p q, exact e c (p, q) ⬝lm e' p q end
|
||||||
sorry-/
|
sorry-/
|
||||||
|
|
||||||
/- definition converges_to_reindex_neg {E'' : agℤ → agℤ → LeftModule R} {Dinf' : graded_module R agℤ}
|
/- definition convergent_exact_couple_reindex_neg {E'' : agℤ → agℤ → LeftModule R} {Dinf' : graded_module R agℤ}
|
||||||
(e' : Πp q, E' p q ≃lm E'' (-p) (-q))
|
(e' : Πp q, E' p q ≃lm E'' (-p) (-q))
|
||||||
(f' : Πn, Dinf n ≃lm Dinf' (-n)) :
|
(f' : Πn, Dinf n ≃lm Dinf' (-n)) :
|
||||||
(λp q, E'' p q) ⟹ λn, Dinf' n :=
|
(λp q, E'' p q) ⟹ λn, Dinf' n :=
|
||||||
converges_to.mk (exact_couple_reindex (equiv_neg ×≃ equiv_neg) X) (is_bounded_reindex _ HH)
|
convergent_exact_couple.mk (exact_couple_reindex (equiv_neg ×≃ equiv_neg) X) (is_bounded_reindex _ HH)
|
||||||
(λn, -s₂ (-n))
|
(λn, -s₂ (-n))
|
||||||
(λn, ap (B' HH) (begin esimp, end) ⬝ HB c n)
|
(λn, ap (B' HH) (begin esimp, end) ⬝ HB c n)
|
||||||
sorry --begin intro x, induction x with p q, exact e c (p, q) ⬝lm e' p q end
|
sorry --begin intro x, induction x with p q, exact e c (p, q) ⬝lm e' p q end
|
||||||
sorry-/
|
sorry-/
|
||||||
|
|
||||||
definition is_built_from_of_converges_to (n : ℤ) : is_built_from (Dinf n) (Einfdiag n) :=
|
definition is_built_from_of_convergent_exact_couple (n : ℤ) : is_built_from (Dinf n) (Einfdiag n) :=
|
||||||
is_built_from_isomorphism_left (f c n) (is_built_from_infpage HH (s₁ n, s₂ n) (HB c n))
|
is_built_from_isomorphism_left (f c n) (is_built_from_infpage HH (s₁ n, s₂ n) (HB c n))
|
||||||
|
|
||||||
/- TODO: reprove this using is_built_of -/
|
/- TODO: reprove this using is_built_of -/
|
||||||
theorem is_contr_converges_to_precise (n : agℤ)
|
theorem is_contr_convergent_exact_couple_precise (n : agℤ)
|
||||||
(H : Π(n : agℤ) (l : ℕ), is_contr (E' ((deg i)^[l] (s₁ n, s₂ n)).1 ((deg i)^[l] (s₁ n, s₂ n)).2)) :
|
(H : Π(n : agℤ) (l : ℕ), is_contr (E' ((deg i)^[l] (s₁ n, s₂ n)).1 ((deg i)^[l] (s₁ n, s₂ n)).2)) :
|
||||||
is_contr (Dinf n) :=
|
is_contr (Dinf n) :=
|
||||||
begin
|
begin
|
||||||
|
@ -701,8 +704,8 @@ namespace left_module
|
||||||
exact equiv_of_isomorphism (Dinfdiag0 HH (s₁ n, s₂ n) (HB c n) ⬝lm f c n)
|
exact equiv_of_isomorphism (Dinfdiag0 HH (s₁ n, s₂ n) (HB c n) ⬝lm f c n)
|
||||||
end
|
end
|
||||||
|
|
||||||
theorem is_contr_converges_to (n : agℤ) (H : Π(n s : agℤ), is_contr (E' n s)) : is_contr (Dinf n) :=
|
theorem is_contr_convergent_exact_couple (n : agℤ) (H : Π(n s : agℤ), is_contr (E' n s)) : is_contr (Dinf n) :=
|
||||||
is_contr_converges_to_precise n (λn s, !H)
|
is_contr_convergent_exact_couple_precise n (λn s, !H)
|
||||||
|
|
||||||
definition E_isomorphism {r₁ r₂ : ℕ} {n s : agℤ} (H : r₁ ≤ r₂)
|
definition E_isomorphism {r₁ r₂ : ℕ} {n s : agℤ} (H : r₁ ≤ r₂)
|
||||||
(H1 : Π⦃r⦄, r₁ ≤ r → r < r₂ → is_contr (E X (n - deg_d1 c r, s - deg_d2 c r)))
|
(H1 : Π⦃r⦄, r₁ ≤ r → r < r₂ → is_contr (E X (n - deg_d1 c r, s - deg_d2 c r)))
|
||||||
|
@ -733,12 +736,12 @@ namespace left_module
|
||||||
end
|
end
|
||||||
|
|
||||||
variables {E' : agℤ → agℤ → AbGroup} {Dinf : agℤ → AbGroup} (c : E' ⟹ᵍ Dinf)
|
variables {E' : agℤ → agℤ → AbGroup} {Dinf : agℤ → AbGroup} (c : E' ⟹ᵍ Dinf)
|
||||||
definition converges_to_g_isomorphism {E'' : agℤ → agℤ → AbGroup} {Dinf' : agℤ → AbGroup}
|
definition convergent_exact_couple_g_isomorphism {E'' : agℤ → agℤ → AbGroup} {Dinf' : agℤ → AbGroup}
|
||||||
(e' : Πn s, E' n s ≃g E'' n s) (f' : Πn, Dinf n ≃g Dinf' n) : E'' ⟹ᵍ Dinf' :=
|
(e' : Πn s, E' n s ≃g E'' n s) (f' : Πn, Dinf n ≃g Dinf' n) : E'' ⟹ᵍ Dinf' :=
|
||||||
converges_to_isomorphism c (λn s, lm_iso_int.mk (e' n s)) (λn, lm_iso_int.mk (f' n))
|
convergent_exact_couple_isomorphism c (λn s, lm_iso_int.mk (e' n s)) (λn, lm_iso_int.mk (f' n))
|
||||||
|
|
||||||
|
|
||||||
structure converging_spectral_sequence.{u v w} {R : Ring} (E' : agℤ → agℤ → LeftModule.{u v} R)
|
structure convergent_spectral_sequence.{u v w} {R : Ring} (E' : agℤ → agℤ → LeftModule.{u v} R)
|
||||||
(Dinf : agℤ → LeftModule.{u w} R) : Type.{max u (v+1) (w+1)} :=
|
(Dinf : agℤ → LeftModule.{u w} R) : Type.{max u (v+1) (w+1)} :=
|
||||||
(E : ℕ → graded_module.{u 0 v} R Z2)
|
(E : ℕ → graded_module.{u 0 v} R Z2)
|
||||||
(d : Π(n : ℕ), E n →gm E n)
|
(d : Π(n : ℕ), E n →gm E n)
|
||||||
|
@ -751,7 +754,6 @@ namespace left_module
|
||||||
|
|
||||||
/-
|
/-
|
||||||
todo:
|
todo:
|
||||||
- rename "converges_to" to converging_exact_couple
|
|
||||||
- double-check the definition of converging_spectral_sequence
|
- double-check the definition of converging_spectral_sequence
|
||||||
- construct converging spectral sequence from a converging exact couple,
|
- construct converging spectral sequence from a converging exact couple,
|
||||||
- This requires the additional hypothesis that the degree of i is (-1, 1), which is true by reflexivity for the spectral sequences we construct
|
- This requires the additional hypothesis that the degree of i is (-1, 1), which is true by reflexivity for the spectral sequences we construct
|
||||||
|
@ -959,9 +961,9 @@ namespace spectrum
|
||||||
-- refine !add.assoc ⬝ ap (add s) !add.comm ⬝ !add.assoc⁻¹,
|
-- refine !add.assoc ⬝ ap (add s) !add.comm ⬝ !add.assoc⁻¹,
|
||||||
-- end
|
-- end
|
||||||
|
|
||||||
definition converges_to_sequence : (λn s, πₛ[n] (sfiber (f s))) ⟹ᵍ (λn, πₛ[n] (A (ub n))) :=
|
definition convergent_exact_couple_sequence : (λn s, πₛ[n] (sfiber (f s))) ⟹ᵍ (λn, πₛ[n] (A (ub n))) :=
|
||||||
begin
|
begin
|
||||||
fapply converges_to.mk,
|
fapply convergent_exact_couple.mk,
|
||||||
{ exact exact_couple_sequence },
|
{ exact exact_couple_sequence },
|
||||||
{ exact is_bounded_sequence },
|
{ exact is_bounded_sequence },
|
||||||
{ exact id },
|
{ exact id },
|
||||||
|
|
|
@ -174,11 +174,11 @@ section atiyah_hirzebruch
|
||||||
definition atiyah_hirzebruch_convergence1 :
|
definition atiyah_hirzebruch_convergence1 :
|
||||||
(λn s, πₛ[n] (sfiber (spi_compose_left (λx, postnikov_smap (Y x) s)))) ⟹ᵍ
|
(λn s, πₛ[n] (sfiber (spi_compose_left (λx, postnikov_smap (Y x) s)))) ⟹ᵍ
|
||||||
(λn, πₛ[n] (spi X (λx, strunc s₀ (Y x)))) :=
|
(λn, πₛ[n] (spi X (λx, strunc s₀ (Y x)))) :=
|
||||||
converges_to_sequence _ (λn, s₀) (λn, n - 1) atiyah_hirzebruch_lb atiyah_hirzebruch_ub
|
convergent_exact_couple_sequence _ (λn, s₀) (λn, n - 1) atiyah_hirzebruch_lb atiyah_hirzebruch_ub
|
||||||
|
|
||||||
definition atiyah_hirzebruch_convergence2 :
|
definition atiyah_hirzebruch_convergence2 :
|
||||||
(λn s, opH^-(n-s)[(x : X), πₛ[s] (Y x)]) ⟹ᵍ (λn, pH^-n[(x : X), Y x]) :=
|
(λn s, opH^-(n-s)[(x : X), πₛ[s] (Y x)]) ⟹ᵍ (λn, pH^n[(x : X), Y x]) :=
|
||||||
converges_to_g_isomorphism atiyah_hirzebruch_convergence1
|
convergent_exact_couple_g_isomorphism (convergent_exact_couple_negate_inf atiyah_hirzebruch_convergence1)
|
||||||
begin
|
begin
|
||||||
intro n s,
|
intro n s,
|
||||||
refine _ ⬝g (parametrized_cohomology_isomorphism_shomotopy_group_spi _ idp)⁻¹ᵍ,
|
refine _ ⬝g (parametrized_cohomology_isomorphism_shomotopy_group_spi _ idp)⁻¹ᵍ,
|
||||||
|
@ -189,7 +189,7 @@ section atiyah_hirzebruch
|
||||||
end
|
end
|
||||||
begin
|
begin
|
||||||
intro n,
|
intro n,
|
||||||
refine _ ⬝g (parametrized_cohomology_isomorphism_shomotopy_group_spi _ idp)⁻¹ᵍ,
|
refine _ ⬝g (parametrized_cohomology_isomorphism_shomotopy_group_spi _ !neg_neg)⁻¹ᵍ,
|
||||||
apply shomotopy_group_isomorphism_of_pequiv, intro k,
|
apply shomotopy_group_isomorphism_of_pequiv, intro k,
|
||||||
exact ppi_pequiv_right (λx, ptrunc_pequiv (maxm2 (s₀ + k)) (Y x k)),
|
exact ppi_pequiv_right (λx, ptrunc_pequiv (maxm2 (s₀ + k)) (Y x k)),
|
||||||
end
|
end
|
||||||
|
@ -211,10 +211,10 @@ section atiyah_hirzebruch
|
||||||
end
|
end
|
||||||
|
|
||||||
definition atiyah_hirzebruch_convergence :
|
definition atiyah_hirzebruch_convergence :
|
||||||
(λp q, opH^p[(x : X), πₛ[-q] (Y x)]) ⟹ᵍ (λn, pH^-n[(x : X), Y x]) :=
|
(λp q, opH^p[(x : X), πₛ[-q] (Y x)]) ⟹ᵍ (λn, pH^n[(x : X), Y x]) :=
|
||||||
begin
|
begin
|
||||||
note z := converges_to_reindex atiyah_hirzebruch_convergence2 atiyah_hirzebruch_base_change,
|
note z := convergent_exact_couple_reindex atiyah_hirzebruch_convergence2 atiyah_hirzebruch_base_change,
|
||||||
refine converges_to_g_isomorphism z _ (λn, by reflexivity),
|
refine convergent_exact_couple_g_isomorphism z _ (by intro n; reflexivity),
|
||||||
intro p q,
|
intro p q,
|
||||||
apply parametrized_cohomology_change_int,
|
apply parametrized_cohomology_change_int,
|
||||||
esimp,
|
esimp,
|
||||||
|
@ -227,8 +227,8 @@ section unreduced_atiyah_hirzebruch
|
||||||
|
|
||||||
definition unreduced_atiyah_hirzebruch_convergence {X : Type} (Y : X → spectrum) (s₀ : ℤ)
|
definition unreduced_atiyah_hirzebruch_convergence {X : Type} (Y : X → spectrum) (s₀ : ℤ)
|
||||||
(H : Πx, is_strunc s₀ (Y x)) :
|
(H : Πx, is_strunc s₀ (Y x)) :
|
||||||
(λp q, uopH^p[(x : X), πₛ[-q] (Y x)]) ⟹ᵍ (λn, upH^-n[(x : X), Y x]) :=
|
(λp q, uopH^p[(x : X), πₛ[-q] (Y x)]) ⟹ᵍ (λn, upH^n[(x : X), Y x]) :=
|
||||||
converges_to_g_isomorphism
|
convergent_exact_couple_g_isomorphism
|
||||||
(@atiyah_hirzebruch_convergence X₊ (add_point_spectrum Y) s₀ (is_strunc_add_point_spectrum H))
|
(@atiyah_hirzebruch_convergence X₊ (add_point_spectrum Y) s₀ (is_strunc_add_point_spectrum H))
|
||||||
begin
|
begin
|
||||||
intro p q, refine _ ⬝g !uopH_isomorphism_opH⁻¹ᵍ,
|
intro p q, refine _ ⬝g !uopH_isomorphism_opH⁻¹ᵍ,
|
||||||
|
@ -248,9 +248,9 @@ section serre
|
||||||
|
|
||||||
include H
|
include H
|
||||||
definition serre_convergence :
|
definition serre_convergence :
|
||||||
(λp q, uopH^p[(b : B), uH^q[F b, Y]]) ⟹ᵍ (λn, uH^-n[Σ(b : B), F b, Y]) :=
|
(λp q, uopH^p[(b : B), uH^q[F b, Y]]) ⟹ᵍ (λn, uH^n[Σ(b : B), F b, Y]) :=
|
||||||
proof
|
proof
|
||||||
converges_to_g_isomorphism
|
convergent_exact_couple_g_isomorphism
|
||||||
(unreduced_atiyah_hirzebruch_convergence
|
(unreduced_atiyah_hirzebruch_convergence
|
||||||
(λx, sp_ucotensor (F x) Y) s₀
|
(λx, sp_ucotensor (F x) Y) s₀
|
||||||
(λx, is_strunc_sp_ucotensor s₀ (F x) H))
|
(λx, is_strunc_sp_ucotensor s₀ (F x) H))
|
||||||
|
@ -262,35 +262,35 @@ section serre
|
||||||
end
|
end
|
||||||
begin
|
begin
|
||||||
intro n,
|
intro n,
|
||||||
refine unreduced_parametrized_cohomology_isomorphism_shomotopy_group_supi _ idp ⬝g _,
|
refine unreduced_parametrized_cohomology_isomorphism_shomotopy_group_supi _ !neg_neg ⬝g _,
|
||||||
refine _ ⬝g (unreduced_cohomology_isomorphism_shomotopy_group_sp_ucotensor _ _ idp)⁻¹ᵍ,
|
refine _ ⬝g (unreduced_cohomology_isomorphism_shomotopy_group_sp_ucotensor _ _ !neg_neg)⁻¹ᵍ,
|
||||||
apply shomotopy_group_isomorphism_of_pequiv, intro k,
|
apply shomotopy_group_isomorphism_of_pequiv, intro k,
|
||||||
exact (sigma_pumap F (Y k))⁻¹ᵉ*
|
exact (sigma_pumap F (Y k))⁻¹ᵉ*
|
||||||
end
|
end
|
||||||
qed
|
qed
|
||||||
|
|
||||||
definition serre_convergence_map :
|
definition serre_convergence_map :
|
||||||
(λp q, uopH^p[(b : B), uH^q[fiber f b, Y]]) ⟹ᵍ (λn, uH^-n[X, Y]) :=
|
(λp q, uopH^p[(b : B), uH^q[fiber f b, Y]]) ⟹ᵍ (λn, uH^n[X, Y]) :=
|
||||||
proof
|
proof
|
||||||
converges_to_g_isomorphism
|
convergent_exact_couple_g_isomorphism
|
||||||
(serre_convergence (fiber f) Y s₀ H)
|
(serre_convergence (fiber f) Y s₀ H)
|
||||||
begin intro p q, reflexivity end
|
begin intro p q, reflexivity end
|
||||||
begin intro n, apply unreduced_cohomology_isomorphism, exact !sigma_fiber_equiv⁻¹ᵉ end
|
begin intro n, apply unreduced_cohomology_isomorphism, exact !sigma_fiber_equiv⁻¹ᵉ end
|
||||||
qed
|
qed
|
||||||
|
|
||||||
definition serre_convergence_of_is_conn (H2 : is_conn 1 B) :
|
definition serre_convergence_of_is_conn (H2 : is_conn 1 B) :
|
||||||
(λp q, uoH^p[B, uH^q[F b₀, Y]]) ⟹ᵍ (λn, uH^-n[Σ(b : B), F b, Y]) :=
|
(λp q, uoH^p[B, uH^q[F b₀, Y]]) ⟹ᵍ (λn, uH^n[Σ(b : B), F b, Y]) :=
|
||||||
proof
|
proof
|
||||||
converges_to_g_isomorphism
|
convergent_exact_couple_g_isomorphism
|
||||||
(serre_convergence F Y s₀ H)
|
(serre_convergence F Y s₀ H)
|
||||||
begin intro p q, exact @uopH_isomorphism_uoH_of_is_conn (pointed.MK B b₀) _ _ H2 end
|
begin intro p q, exact @uopH_isomorphism_uoH_of_is_conn (pointed.MK B b₀) _ _ H2 end
|
||||||
begin intro n, reflexivity end
|
begin intro n, reflexivity end
|
||||||
qed
|
qed
|
||||||
|
|
||||||
definition serre_convergence_map_of_is_conn (H2 : is_conn 1 B) :
|
definition serre_convergence_map_of_is_conn (H2 : is_conn 1 B) :
|
||||||
(λp q, uoH^p[B, uH^q[fiber f b₀, Y]]) ⟹ᵍ (λn, uH^-n[X, Y]) :=
|
(λp q, uoH^p[B, uH^q[fiber f b₀, Y]]) ⟹ᵍ (λn, uH^n[X, Y]) :=
|
||||||
proof
|
proof
|
||||||
converges_to_g_isomorphism
|
convergent_exact_couple_g_isomorphism
|
||||||
(serre_convergence_of_is_conn b₀ (fiber f) Y s₀ H H2)
|
(serre_convergence_of_is_conn b₀ (fiber f) Y s₀ H H2)
|
||||||
begin intro p q, reflexivity end
|
begin intro p q, reflexivity end
|
||||||
begin intro n, apply unreduced_cohomology_isomorphism, exact !sigma_fiber_equiv⁻¹ᵉ end
|
begin intro n, apply unreduced_cohomology_isomorphism, exact !sigma_fiber_equiv⁻¹ᵉ end
|
||||||
|
|
Loading…
Reference in a new issue