finish definition of j'

This commit is contained in:
Floris van Doorn 2017-04-21 18:00:27 -04:00
parent e87cbbce9e
commit 987f9f41ed

View file

@ -366,9 +366,10 @@ namespace left_module
theorem j_lemma2 : Π⦃x : I⦄ ⦃m : D x⦄ (p : i x m = 0),
(graded_quotient_map _ ∘gm graded_hom_lift j j_lemma1) x m = 0 :> E' _ :=
begin
have Π⦃x : I⦄ ⦃m : D (deg k x)⦄ (p : i (deg k x) m = 0), image (d x) (j (deg k x) m),
have Π⦃x y : I⦄ (q : deg k x = y) (r : deg d x = deg j y) (s : ap (deg j) q = r) ⦃m : D y⦄
(p : i y m = 0), image (d ↘ r) (j y m),
begin
intros,
intros, induction s, induction q,
note m_in_im_k := is_exact.ker_in_im (exact_ki idp _) _ p,
induction m_in_im_k with e q,
induction q,
@ -376,7 +377,10 @@ namespace left_module
end,
have Π⦃x : I⦄ ⦃m : D x⦄ (p : i x m = 0), image (d ← (deg j x)) (j x m),
begin
exact sorry
intros,
refine this _ _ _ p,
exact to_right_inv (deg k) _ ⬝ to_left_inv (deg j) x,
rewrite [ap_con, -adj],
end,
intros,
rewrite [graded_hom_compose_fn],