trivial homotopy groups of truncated spectra

This commit is contained in:
Ulrik Buchholtz 2017-06-28 17:19:23 +01:00
parent 2092e4a83b
commit 9934c9c73d

View file

@ -1,6 +1,20 @@
import .spectrum .EM import .spectrum .EM
-- TODO move this
namespace int
definition max0_le_of_le {n : } {m : } (H : n ≤ of_nat m)
: nat.le (max0 n) m :=
begin
induction n with n n,
{ exact le_of_of_nat_le_of_nat H },
{ exact nat.zero_le m }
end
end int
open int trunc eq is_trunc lift unit pointed equiv is_equiv algebra EM open int trunc eq is_trunc lift unit pointed equiv is_equiv algebra EM
namespace spectrum namespace spectrum
definition trunc_int.{u} (k : ) (X : Type.{u}) : Type.{u} := definition trunc_int.{u} (k : ) (X : Type.{u}) : Type.{u} :=
@ -60,13 +74,35 @@ begin
{ -- case = -1 { -- case = -1
exact is_trunc -1 X }, exact is_trunc -1 X },
{ -- case < -1 { -- case < -1
exact lift unit } } exact is_contr X } }
end end
definition is_trunc_int_change_int {k l : } (X : Type) (p : k = l) definition is_trunc_int_change_int {k l : } (X : Type) (p : k = l)
: is_trunc_int k X → is_trunc_int l X := : is_trunc_int k X → is_trunc_int l X :=
begin induction p, exact id end begin induction p, exact id end
definition is_trunc_int_loop (A : pType) (k : )
: is_trunc_int (k + 1) A → is_trunc_int k (Ω A) :=
begin
intro H, induction k with k k,
{ apply is_trunc_loop, exact H },
{ cases k with k,
{ apply is_trunc_loop, exact H},
{ apply is_trunc_loop, cases k with k,
{ exact H },
{ apply is_trunc_succ, exact H } } }
end
definition is_trunc_of_is_trunc_int (k : ) (X : Type)
: is_trunc_int k X → is_trunc (max0 k) X :=
begin
intro H, induction k with k k,
{ exact H },
{ cases k with k,
{ apply is_trunc_succ, exact H },
{ apply is_trunc_of_is_contr, exact H } }
end
definition is_strunc (k : ) (E : spectrum) : Type := definition is_strunc (k : ) (E : spectrum) : Type :=
Π (n : ), is_trunc_int (k + n) (E n) Π (n : ), is_trunc_int (k + n) (E n)
@ -84,7 +120,7 @@ begin
{ -- case = -1 { -- case = -1
exact is_trunc_trunc -1 X }, exact is_trunc_trunc -1 X },
{ -- case < -1 { -- case < -1
exact up unit.star } } apply is_trunc_lift } }
end end
definition is_trunc_ptrunc_int (k : ) (X : pType) definition is_trunc_ptrunc_int (k : ) (X : pType)
@ -97,7 +133,7 @@ begin
{ -- case = -1 { -- case = -1
apply is_trunc_lift, apply is_trunc_unit }, apply is_trunc_lift, apply is_trunc_unit },
{ -- case < -1 { -- case < -1
exact up unit.star } } apply is_trunc_lift, apply is_trunc_unit } }
end end
definition is_strunc_strunc (k : ) (E : spectrum) definition is_strunc_strunc (k : ) (E : spectrum)
@ -111,16 +147,24 @@ begin
{ -- case ≥ 0 { -- case ≥ 0
apply is_trunc_int_change_int (EM G n) (zero_add n)⁻¹, apply is_trunc_int_change_int (EM G n) (zero_add n)⁻¹,
apply is_trunc_EM }, apply is_trunc_EM },
{ cases n, { induction n with n IH,
{ -- case = -1 { -- case = -1
apply is_trunc_loop, exact ab_group.is_set_carrier G }, apply is_trunc_loop, exact ab_group.is_set_carrier G },
{ -- case < -1 { -- case < -1
exact up unit.star }} apply is_trunc_int_loop, exact IH }}
end end
definition trivial_shomotopy_group_of_is_strunc (E : spectrum) definition trivial_shomotopy_group_of_is_strunc (E : spectrum)
{n k : } (K : is_strunc n E) (H : n < k) {n k : } (K : is_strunc n E) (H : n < k)
: is_contr (πₛ[k] E) := : is_contr (πₛ[k] E) :=
sorry let m := n + (2 - k) in
have I : m < 2, from
calc
m = (2 - k) + n : int.add_comm n (2 - k)
... < (2 - k) + k : add_lt_add_left H (2 - k)
... = 2 : sub_add_cancel 2 k,
@trivial_homotopy_group_of_is_trunc (E (2 - k)) (max0 m) 2
(is_trunc_of_is_trunc_int m (E (2 - k)) (K (2 - k)))
(nat.succ_le_succ (max0_le_of_le (le_sub_one_of_lt I)))
end spectrum end spectrum