sec86: finish proof of stability of spheres as groups
This commit is contained in:
parent
0f9433c921
commit
9a476fecfe
3 changed files with 116 additions and 83 deletions
|
@ -63,29 +63,13 @@ namespace is_conn
|
|||
(is_exact_LES_of_homotopy_groups f (n, 2))
|
||||
(@is_contr_HG_fiber_of_is_connected A B n n f H !le.refl)
|
||||
|
||||
|
||||
-- TODO: move or remove
|
||||
|
||||
definition join_empty_right [constructor] (A : Type) : join A empty ≃ A :=
|
||||
begin
|
||||
fapply equiv.MK,
|
||||
{ intro x, induction x with a o a o,
|
||||
{ exact a },
|
||||
{ exact empty.elim o },
|
||||
{ exact empty.elim o } },
|
||||
{ exact pushout.inl },
|
||||
{ intro a, reflexivity},
|
||||
{ intro x, induction x with a o a o,
|
||||
{ reflexivity },
|
||||
{ exact empty.elim o },
|
||||
{ exact empty.elim o } }
|
||||
end
|
||||
|
||||
-- TODO: move and rename?
|
||||
definition natural_square2 {A B X : Type} {f : A → X} {g : B → X} (h : Πa b, f a = g b)
|
||||
{a a' : A} {b b' : B} (p : a = a') (q : b = b')
|
||||
: square (ap f p) (ap g q) (h a b) (h a' b') :=
|
||||
by induction p; induction q; exact hrfl
|
||||
|
||||
-- TODO: move
|
||||
section
|
||||
open sphere sphere_index
|
||||
|
||||
|
|
|
@ -615,6 +615,7 @@ namespace chain_complex
|
|||
| (n, x) := loop_spaces2_pequiv' n x
|
||||
|
||||
local attribute loop_pequiv_loop [reducible]
|
||||
|
||||
/- all cases where n>0 are basically the same -/
|
||||
definition loop_spaces_fun2_phomotopy (x : +3ℕ) :
|
||||
loop_spaces2_pequiv x ∘* loop_spaces_fun (nat_of_str x) ~*
|
||||
|
@ -622,7 +623,8 @@ namespace chain_complex
|
|||
∘* pcast (ap (loop_spaces) (nat_of_str_3S x)) :=
|
||||
begin
|
||||
cases x with n x, cases x with k H,
|
||||
cases k with k, rotate 1, cases k with k, rotate 1, cases k with k, rotate 2,
|
||||
do 3 (cases k with k; rotate 1),
|
||||
{ /-k≥3-/ exfalso, apply lt_le_antisymm H, apply le_add_left},
|
||||
{ /-k=0-/
|
||||
induction n with n IH,
|
||||
{ refine !pid_comp ⬝* _ ⬝* !comp_pid⁻¹* ⬝* !comp_pid⁻¹*,
|
||||
|
@ -649,7 +651,6 @@ namespace chain_complex
|
|||
refine _ ⬝* pwhisker_right _ !loop_spaces_fun2_add1_2⁻¹*,
|
||||
refine !ap1_compose⁻¹* ⬝* _ ⬝* !ap1_compose, apply ap1_phomotopy,
|
||||
exact IH ⬝* !comp_pid}},
|
||||
{ /-k=k'+3-/ exfalso, apply lt_le_antisymm H, apply le_add_left}
|
||||
end
|
||||
|
||||
definition LES_of_loop_spaces2 [constructor] : type_chain_complex +3ℕ :=
|
||||
|
|
|
@ -1,4 +1,8 @@
|
|||
-- TODO: in wedge connectivity and is_conn.elim, unbundle P
|
||||
/-
|
||||
Copyright (c) 2016 Floris van Doorn. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Floris van Doorn
|
||||
-/
|
||||
|
||||
import homotopy.wedge algebra.homotopy_group homotopy.sphere types.nat
|
||||
|
||||
|
@ -15,24 +19,6 @@ open eq is_conn is_trunc pointed susp nat pi equiv is_equiv trunc fiber trunc_in
|
|||
-- { exact sorry}
|
||||
-- end
|
||||
|
||||
-- example : ((@add.{0} trunc_index has_add_trunc_index n
|
||||
-- (trunc_index.of_nat
|
||||
-- (@add.{0} nat nat._trans_of_decidable_linear_ordered_semiring_17 nat.zero
|
||||
-- (@one.{0} nat nat._trans_of_decidable_linear_ordered_semiring_21))))) = (0 : ℕ₋₂) := proof idp qed
|
||||
|
||||
definition iterated_loop_ptrunc_pequiv_con (n : ℕ₋₂) (k : ℕ) (A : Type*)
|
||||
(p q : Ω[k + 1](ptrunc (n+k+1) A)) :
|
||||
iterated_loop_ptrunc_pequiv n (k+1) A (p ⬝ q) =
|
||||
trunc_concat (iterated_loop_ptrunc_pequiv n (k+1) A p)
|
||||
(iterated_loop_ptrunc_pequiv n (k+1) A q) :=
|
||||
begin
|
||||
exact sorry
|
||||
-- induction k with k IH,
|
||||
-- { replace (nat.zero + 1) with (nat.succ nat.zero), esimp [iterated_loop_ptrunc_pequiv],
|
||||
-- exact sorry},
|
||||
-- { exact sorry}
|
||||
end
|
||||
|
||||
theorem elim_type_merid_inv {A : Type} (PN : Type) (PS : Type) (Pm : A → PN ≃ PS)
|
||||
(a : A) : transport (susp.elim_type PN PS Pm) (merid a)⁻¹ = to_inv (Pm a) :=
|
||||
by rewrite [tr_eq_cast_ap_fn,↑susp.elim_type,ap_inv,elim_merid]; apply cast_ua_inv_fn
|
||||
|
@ -49,14 +35,18 @@ open eq is_conn is_trunc pointed susp nat pi equiv is_equiv trunc fiber trunc_in
|
|||
|
||||
namespace freudenthal section
|
||||
|
||||
/- The Freudenthal Suspension Theorem -/
|
||||
parameters {A : Type*} {n : ℕ} [is_conn n A]
|
||||
|
||||
--porting from Agda
|
||||
-- definition Q (x : susp A) : Type :=
|
||||
-- trunc (k) (north = x)
|
||||
/-
|
||||
This proof is ported from Agda
|
||||
This is the 95% version of the Freudenthal Suspension Theorem, which means that we don't
|
||||
prove that loop_susp_unit : A →* Ω(psusp A) is 2n-connected (if A is n-connected),
|
||||
but instead we only prove that it induces an equivalence on the first 2n homotopy groups.
|
||||
-/
|
||||
|
||||
definition up (a : A) : north = north :> susp A := -- up a = loop_susp_unit A a
|
||||
merid a ⬝ (merid pt)⁻¹
|
||||
definition up (a : A) : north = north :> susp A :=
|
||||
loop_susp_unit A a
|
||||
|
||||
definition code_merid : A → ptrunc (n + n) A → ptrunc (n + n) A :=
|
||||
begin
|
||||
|
@ -191,31 +181,8 @@ namespace freudenthal section
|
|||
definition pequiv' : ptrunc (n + n) A ≃* ptrunc (n + n) (Ω (psusp A)) :=
|
||||
pequiv_of_equiv equiv' decode_north_pt
|
||||
|
||||
-- can we get this?
|
||||
-- definition freudenthal_suspension : is_conn_fun (n+n) (loop_susp_unit A) :=
|
||||
-- begin
|
||||
-- intro p, esimp at *, fapply is_contr.mk,
|
||||
-- { note c := encode (tr p), esimp at *, induction c with a, },
|
||||
-- { exact sorry}
|
||||
-- end
|
||||
|
||||
-- {- Used to prove stability in iterated suspensions -}
|
||||
-- module FreudenthalIso
|
||||
-- {i} (n : ℕ₋₂) (k : ℕ) (t : k ≠ O) (kle : ⟨ k ⟩ ≤T S (n +2+ S n))
|
||||
-- (X : Ptd i) (cX : is-connected (S (S n)) (fst X)) where
|
||||
|
||||
-- open FreudenthalEquiv n (⟨ k ⟩) kle (fst X) (snd X) cX public
|
||||
|
||||
-- hom : Ω^-Group k t (⊙Trunc ⟨ k ⟩ X) Trunc-level
|
||||
-- →ᴳ Ω^-Group k t (⊙Trunc ⟨ k ⟩ (⊙Ω (⊙Susp X))) Trunc-level
|
||||
-- hom = record {
|
||||
-- f = fst F;
|
||||
-- pres-comp = ap^-conc^ k t (decodeN , decodeN-pt) }
|
||||
-- where F = ap^ k (decodeN , decodeN-pt)
|
||||
|
||||
-- iso : Ω^-Group k t (⊙Trunc ⟨ k ⟩ X) Trunc-level
|
||||
-- ≃ᴳ Ω^-Group k t (⊙Trunc ⟨ k ⟩ (⊙Ω (⊙Susp X))) Trunc-level
|
||||
-- iso = (hom , is-equiv-ap^ k (decodeN , decodeN-pt) (snd eq))
|
||||
-- We don't prove this:
|
||||
-- theorem freudenthal_suspension : is_conn_fun (n+n) (loop_susp_unit A) :=
|
||||
|
||||
end end freudenthal
|
||||
|
||||
|
@ -233,7 +200,12 @@ freudenthal_pequiv A H
|
|||
namespace sphere
|
||||
open ops algebra pointed function
|
||||
|
||||
definition stability_pequiv (k n : ℕ) (H : k + 2 ≤ 2 * n) : π*[k + 1] (S. (n+1)) ≃* π*[k] (S. n) :=
|
||||
-- replace with definition in algebra.homotopy_group
|
||||
definition phomotopy_group_succ_in2 (A : Type*) (n : ℕ) : π*[n + 1] A = π*[n] Ω A :> Type* :=
|
||||
ap (ptrunc 0) (loop_space_succ_eq_in A n)
|
||||
|
||||
definition stability_pequiv_helper (k n : ℕ) (H : k + 2 ≤ 2 * n)
|
||||
: ptrunc k (Ω(psusp (S. n))) ≃* ptrunc k (S. n) :=
|
||||
begin
|
||||
have H' : k ≤ 2 * pred n,
|
||||
begin
|
||||
|
@ -246,24 +218,100 @@ namespace sphere
|
|||
{ exfalso, exact not_succ_le_zero _ H},
|
||||
{ esimp, apply is_conn_psphere}
|
||||
end,
|
||||
refine pequiv_of_eq (ap (ptrunc 0) (loop_space_succ_eq_in (S. (n+1)) k)) ⬝e* _,
|
||||
symmetry, exact freudenthal_pequiv (S. n) H'
|
||||
end
|
||||
|
||||
definition stability_pequiv (k n : ℕ) (H : k + 2 ≤ 2 * n) : π*[k + 1] (S. (n+1)) ≃* π*[k] (S. n) :=
|
||||
begin
|
||||
refine pequiv_of_eq (phomotopy_group_succ_in2 (S. (n+1)) k) ⬝e* _,
|
||||
rewrite psphere_succ,
|
||||
refine !phomotopy_group_pequiv_loop_ptrunc ⬝e* _,
|
||||
refine loopn_pequiv_loopn k (freudenthal_pequiv _ H')⁻¹ᵉ* ⬝e* _,
|
||||
refine loopn_pequiv_loopn k (stability_pequiv_helper k n H) ⬝e* _,
|
||||
exact !phomotopy_group_pequiv_loop_ptrunc⁻¹ᵉ*,
|
||||
end
|
||||
|
||||
--print phomotopy_group_pequiv_loop_ptrunc
|
||||
--print iterated_loop_ptrunc_pequiv
|
||||
-- definition to_fun_stability_pequiv (k n : ℕ) (H : k + 3 ≤ 2 * n) --(p : π*[k + 1] (S. (n+1)))
|
||||
-- : stability_pequiv (k+1) n H = _ ∘ _ ∘ cast (ap (ptrunc 0) (loop_space_succ_eq_in (S. (n+1)) (k+1))) :=
|
||||
-- sorry
|
||||
-- change some "+1"'s intro succ's to avoid this definition (or vice versa)
|
||||
definition group_homotopy_group2 [instance] (k : ℕ) (A : Type*) :
|
||||
group (carrier (ptrunctype.to_pType (π*[k + 1] A))) :=
|
||||
group_homotopy_group k A
|
||||
|
||||
-- definition stability (k n : ℕ) (H : k + 3 ≤ 2 * n) : πg[k+1 +1] (S. (n+1)) = πg[k+1] (S. n) :=
|
||||
-- begin
|
||||
-- fapply Group_eq,
|
||||
-- { refine equiv_of_pequiv (stability_pequiv _ _ _), rewrite succ_add, exact H},
|
||||
-- { intro g h, esimp, }
|
||||
-- end
|
||||
definition loop_pequiv_loop_con {A B : Type*} (f : A ≃* B) (p q : Ω A)
|
||||
: loop_pequiv_loop f (p ⬝ q) = loop_pequiv_loop f p ⬝ loop_pequiv_loop f q :=
|
||||
loopn_pequiv_loopn_con 0 f p q
|
||||
|
||||
definition iterated_loop_ptrunc_pequiv_con {n : ℕ₋₂} {k : ℕ} {A : Type*}
|
||||
(p q : Ω[succ k] (ptrunc (n+succ k) A)) :
|
||||
iterated_loop_ptrunc_pequiv n (succ k) A (p ⬝ q) =
|
||||
trunc_concat (iterated_loop_ptrunc_pequiv n (succ k) A p)
|
||||
(iterated_loop_ptrunc_pequiv n (succ k) A q) :=
|
||||
begin
|
||||
refine _ ⬝ loop_ptrunc_pequiv_con _ _,
|
||||
exact ap !loop_ptrunc_pequiv !loop_pequiv_loop_con
|
||||
end
|
||||
|
||||
theorem inv_respect_binary_operation {A B : Type} (f : A ≃ B) (mA : A → A → A) (mB : B → B → B)
|
||||
(p : Πa₁ a₂, f (mA a₁ a₂) = mB (f a₁) (f a₂)) (b₁ b₂ : B) :
|
||||
f⁻¹ (mB b₁ b₂) = mA (f⁻¹ b₁) (f⁻¹ b₂) :=
|
||||
begin
|
||||
refine is_equiv_rect' f⁻¹ _ _ b₁, refine is_equiv_rect' f⁻¹ _ _ b₂,
|
||||
intros a₂ a₁, apply inv_eq_of_eq, symmetry, exact p a₁ a₂
|
||||
end
|
||||
|
||||
definition iterated_loop_ptrunc_pequiv_inv_con {n : ℕ₋₂} {k : ℕ} {A : Type*}
|
||||
(p q : ptrunc n (Ω[succ k] A)) :
|
||||
(iterated_loop_ptrunc_pequiv n (succ k) A)⁻¹ᵉ* (trunc_concat p q) =
|
||||
(iterated_loop_ptrunc_pequiv n (succ k) A)⁻¹ᵉ* p ⬝
|
||||
(iterated_loop_ptrunc_pequiv n (succ k) A)⁻¹ᵉ* q :=
|
||||
inv_respect_binary_operation (iterated_loop_ptrunc_pequiv n (succ k) A) concat trunc_concat
|
||||
(@iterated_loop_ptrunc_pequiv_con n k A) p q
|
||||
|
||||
definition phomotopy_group_pequiv_loop_ptrunc_con {k : ℕ} {A : Type*} (p q : πg[k +1] A) :
|
||||
phomotopy_group_pequiv_loop_ptrunc (succ k) A (p * q) =
|
||||
phomotopy_group_pequiv_loop_ptrunc (succ k) A p ⬝
|
||||
phomotopy_group_pequiv_loop_ptrunc (succ k) A q :=
|
||||
begin
|
||||
refine _ ⬝ !loopn_pequiv_loopn_con,
|
||||
exact ap (loopn_pequiv_loopn _ _) !iterated_loop_ptrunc_pequiv_inv_con
|
||||
end
|
||||
|
||||
definition phomotopy_group_pequiv_loop_ptrunc_inv_con {k : ℕ} {A : Type*}
|
||||
(p q : Ω[succ k] (ptrunc (succ k) A)) :
|
||||
(phomotopy_group_pequiv_loop_ptrunc (succ k) A)⁻¹ᵉ* (p ⬝ q) =
|
||||
(phomotopy_group_pequiv_loop_ptrunc (succ k) A)⁻¹ᵉ* p *
|
||||
(phomotopy_group_pequiv_loop_ptrunc (succ k) A)⁻¹ᵉ* q :=
|
||||
inv_respect_binary_operation (phomotopy_group_pequiv_loop_ptrunc (succ k) A) mul concat
|
||||
(@phomotopy_group_pequiv_loop_ptrunc_con k A) p q
|
||||
|
||||
definition tcast [constructor] {n : ℕ₋₂} {A B : n-Type*} (p : A = B) : A →* B :=
|
||||
pcast (ap ptrunctype.to_pType p)
|
||||
|
||||
definition tr_mul_tr {n : ℕ} {A : Type*} (p q : Ω[succ n] A)
|
||||
: tr p *[π[n + 1] A] tr q = tr (p ⬝ q) :=
|
||||
idp
|
||||
|
||||
-- use this in proof for ghomotopy_group_succ_in
|
||||
definition phomotopy_group_succ_in2_con {A : Type*} {n : ℕ} (g h : πg[succ n +1] A) :
|
||||
pcast (phomotopy_group_succ_in2 A (succ n)) (g * h) =
|
||||
pcast (phomotopy_group_succ_in2 A (succ n)) g * pcast (phomotopy_group_succ_in2 A (succ n)) h :=
|
||||
begin
|
||||
induction g with p, induction h with q, esimp,
|
||||
rewrite [-+tr_eq_cast_ap, ↑phomotopy_group_succ_in2, -+tr_compose],
|
||||
refine ap (transport _ _) !tr_mul_tr ⬝ _,
|
||||
rewrite [+trunc_transport],
|
||||
apply ap tr, apply loop_space_succ_eq_in_concat,
|
||||
end
|
||||
|
||||
definition stability_eq (k n : ℕ) (H : k + 3 ≤ 2 * n) : πg[k+1 +1] (S. (n+1)) = πg[k+1] (S. n) :=
|
||||
begin
|
||||
fapply Group_eq,
|
||||
{ exact equiv_of_pequiv (stability_pequiv (succ k) n H)},
|
||||
{ intro g h,
|
||||
refine _ ⬝ !phomotopy_group_pequiv_loop_ptrunc_inv_con,
|
||||
apply ap !phomotopy_group_pequiv_loop_ptrunc⁻¹ᵉ*,
|
||||
refine ap (loopn_pequiv_loopn _ _) _ ⬝ !loopn_pequiv_loopn_con,
|
||||
refine ap !phomotopy_group_pequiv_loop_ptrunc _ ⬝ !phomotopy_group_pequiv_loop_ptrunc_con,
|
||||
apply phomotopy_group_succ_in2_con
|
||||
}
|
||||
end
|
||||
|
||||
end sphere
|
||||
|
|
Loading…
Reference in a new issue