sec86: finish proof of stability of spheres as groups

This commit is contained in:
Floris van Doorn 2016-04-11 15:55:28 -04:00
parent 0f9433c921
commit 9a476fecfe
3 changed files with 116 additions and 83 deletions

View file

@ -63,29 +63,13 @@ namespace is_conn
(is_exact_LES_of_homotopy_groups f (n, 2))
(@is_contr_HG_fiber_of_is_connected A B n n f H !le.refl)
-- TODO: move or remove
definition join_empty_right [constructor] (A : Type) : join A empty ≃ A :=
begin
fapply equiv.MK,
{ intro x, induction x with a o a o,
{ exact a },
{ exact empty.elim o },
{ exact empty.elim o } },
{ exact pushout.inl },
{ intro a, reflexivity},
{ intro x, induction x with a o a o,
{ reflexivity },
{ exact empty.elim o },
{ exact empty.elim o } }
end
-- TODO: move and rename?
definition natural_square2 {A B X : Type} {f : A → X} {g : B → X} (h : Πa b, f a = g b)
{a a' : A} {b b' : B} (p : a = a') (q : b = b')
: square (ap f p) (ap g q) (h a b) (h a' b') :=
by induction p; induction q; exact hrfl
-- TODO: move
section
open sphere sphere_index

View file

@ -615,6 +615,7 @@ namespace chain_complex
| (n, x) := loop_spaces2_pequiv' n x
local attribute loop_pequiv_loop [reducible]
/- all cases where n>0 are basically the same -/
definition loop_spaces_fun2_phomotopy (x : +3) :
loop_spaces2_pequiv x ∘* loop_spaces_fun (nat_of_str x) ~*
@ -622,7 +623,8 @@ namespace chain_complex
∘* pcast (ap (loop_spaces) (nat_of_str_3S x)) :=
begin
cases x with n x, cases x with k H,
cases k with k, rotate 1, cases k with k, rotate 1, cases k with k, rotate 2,
do 3 (cases k with k; rotate 1),
{ /-k≥3-/ exfalso, apply lt_le_antisymm H, apply le_add_left},
{ /-k=0-/
induction n with n IH,
{ refine !pid_comp ⬝* _ ⬝* !comp_pid⁻¹* ⬝* !comp_pid⁻¹*,
@ -649,7 +651,6 @@ namespace chain_complex
refine _ ⬝* pwhisker_right _ !loop_spaces_fun2_add1_2⁻¹*,
refine !ap1_compose⁻¹* ⬝* _ ⬝* !ap1_compose, apply ap1_phomotopy,
exact IH ⬝* !comp_pid}},
{ /-k=k'+3-/ exfalso, apply lt_le_antisymm H, apply le_add_left}
end
definition LES_of_loop_spaces2 [constructor] : type_chain_complex +3 :=

View file

@ -1,4 +1,8 @@
-- TODO: in wedge connectivity and is_conn.elim, unbundle P
/-
Copyright (c) 2016 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
-/
import homotopy.wedge algebra.homotopy_group homotopy.sphere types.nat
@ -15,24 +19,6 @@ open eq is_conn is_trunc pointed susp nat pi equiv is_equiv trunc fiber trunc_in
-- { exact sorry}
-- end
-- example : ((@add.{0} trunc_index has_add_trunc_index n
-- (trunc_index.of_nat
-- (@add.{0} nat nat._trans_of_decidable_linear_ordered_semiring_17 nat.zero
-- (@one.{0} nat nat._trans_of_decidable_linear_ordered_semiring_21))))) = (0 : ℕ₋₂) := proof idp qed
definition iterated_loop_ptrunc_pequiv_con (n : ℕ₋₂) (k : ) (A : Type*)
(p q : Ω[k + 1](ptrunc (n+k+1) A)) :
iterated_loop_ptrunc_pequiv n (k+1) A (p ⬝ q) =
trunc_concat (iterated_loop_ptrunc_pequiv n (k+1) A p)
(iterated_loop_ptrunc_pequiv n (k+1) A q) :=
begin
exact sorry
-- induction k with k IH,
-- { replace (nat.zero + 1) with (nat.succ nat.zero), esimp [iterated_loop_ptrunc_pequiv],
-- exact sorry},
-- { exact sorry}
end
theorem elim_type_merid_inv {A : Type} (PN : Type) (PS : Type) (Pm : A → PN ≃ PS)
(a : A) : transport (susp.elim_type PN PS Pm) (merid a)⁻¹ = to_inv (Pm a) :=
by rewrite [tr_eq_cast_ap_fn,↑susp.elim_type,ap_inv,elim_merid]; apply cast_ua_inv_fn
@ -49,14 +35,18 @@ open eq is_conn is_trunc pointed susp nat pi equiv is_equiv trunc fiber trunc_in
namespace freudenthal section
/- The Freudenthal Suspension Theorem -/
parameters {A : Type*} {n : } [is_conn n A]
--porting from Agda
-- definition Q (x : susp A) : Type :=
-- trunc (k) (north = x)
/-
This proof is ported from Agda
This is the 95% version of the Freudenthal Suspension Theorem, which means that we don't
prove that loop_susp_unit : A →* Ω(psusp A) is 2n-connected (if A is n-connected),
but instead we only prove that it induces an equivalence on the first 2n homotopy groups.
-/
definition up (a : A) : north = north :> susp A := -- up a = loop_susp_unit A a
merid a ⬝ (merid pt)⁻¹
definition up (a : A) : north = north :> susp A :=
loop_susp_unit A a
definition code_merid : A → ptrunc (n + n) A → ptrunc (n + n) A :=
begin
@ -191,31 +181,8 @@ namespace freudenthal section
definition pequiv' : ptrunc (n + n) A ≃* ptrunc (n + n) (Ω (psusp A)) :=
pequiv_of_equiv equiv' decode_north_pt
-- can we get this?
-- definition freudenthal_suspension : is_conn_fun (n+n) (loop_susp_unit A) :=
-- begin
-- intro p, esimp at *, fapply is_contr.mk,
-- { note c := encode (tr p), esimp at *, induction c with a, },
-- { exact sorry}
-- end
-- {- Used to prove stability in iterated suspensions -}
-- module FreudenthalIso
-- {i} (n : ℕ₋₂) (k : ) (t : k ≠ O) (kle : ⟨ k ⟩ ≤T S (n +2+ S n))
-- (X : Ptd i) (cX : is-connected (S (S n)) (fst X)) where
-- open FreudenthalEquiv n (⟨ k ⟩) kle (fst X) (snd X) cX public
-- hom : Ω^-Group k t (⊙Trunc ⟨ k ⟩ X) Trunc-level
-- →ᴳ Ω^-Group k t (⊙Trunc ⟨ k ⟩ (⊙Ω (⊙Susp X))) Trunc-level
-- hom = record {
-- f = fst F;
-- pres-comp = ap^-conc^ k t (decodeN , decodeN-pt) }
-- where F = ap^ k (decodeN , decodeN-pt)
-- iso : Ω^-Group k t (⊙Trunc ⟨ k ⟩ X) Trunc-level
-- ≃ᴳ Ω^-Group k t (⊙Trunc ⟨ k ⟩ (⊙Ω (⊙Susp X))) Trunc-level
-- iso = (hom , is-equiv-ap^ k (decodeN , decodeN-pt) (snd eq))
-- We don't prove this:
-- theorem freudenthal_suspension : is_conn_fun (n+n) (loop_susp_unit A) :=
end end freudenthal
@ -233,7 +200,12 @@ freudenthal_pequiv A H
namespace sphere
open ops algebra pointed function
definition stability_pequiv (k n : ) (H : k + 2 ≤ 2 * n) : π*[k + 1] (S. (n+1)) ≃* π*[k] (S. n) :=
-- replace with definition in algebra.homotopy_group
definition phomotopy_group_succ_in2 (A : Type*) (n : ) : π*[n + 1] A = π*[n] Ω A :> Type* :=
ap (ptrunc 0) (loop_space_succ_eq_in A n)
definition stability_pequiv_helper (k n : ) (H : k + 2 ≤ 2 * n)
: ptrunc k (Ω(psusp (S. n))) ≃* ptrunc k (S. n) :=
begin
have H' : k ≤ 2 * pred n,
begin
@ -246,24 +218,100 @@ namespace sphere
{ exfalso, exact not_succ_le_zero _ H},
{ esimp, apply is_conn_psphere}
end,
refine pequiv_of_eq (ap (ptrunc 0) (loop_space_succ_eq_in (S. (n+1)) k)) ⬝e* _,
symmetry, exact freudenthal_pequiv (S. n) H'
end
definition stability_pequiv (k n : ) (H : k + 2 ≤ 2 * n) : π*[k + 1] (S. (n+1)) ≃* π*[k] (S. n) :=
begin
refine pequiv_of_eq (phomotopy_group_succ_in2 (S. (n+1)) k) ⬝e* _,
rewrite psphere_succ,
refine !phomotopy_group_pequiv_loop_ptrunc ⬝e* _,
refine loopn_pequiv_loopn k (freudenthal_pequiv _ H')⁻¹ᵉ* ⬝e* _,
refine loopn_pequiv_loopn k (stability_pequiv_helper k n H) ⬝e* _,
exact !phomotopy_group_pequiv_loop_ptrunc⁻¹ᵉ*,
end
--print phomotopy_group_pequiv_loop_ptrunc
--print iterated_loop_ptrunc_pequiv
-- definition to_fun_stability_pequiv (k n : ) (H : k + 3 ≤ 2 * n) --(p : π*[k + 1] (S. (n+1)))
-- : stability_pequiv (k+1) n H = _ ∘ _ ∘ cast (ap (ptrunc 0) (loop_space_succ_eq_in (S. (n+1)) (k+1))) :=
-- sorry
-- change some "+1"'s intro succ's to avoid this definition (or vice versa)
definition group_homotopy_group2 [instance] (k : ) (A : Type*) :
group (carrier (ptrunctype.to_pType (π*[k + 1] A))) :=
group_homotopy_group k A
-- definition stability (k n : ) (H : k + 3 ≤ 2 * n) : πg[k+1 +1] (S. (n+1)) = πg[k+1] (S. n) :=
-- begin
-- fapply Group_eq,
-- { refine equiv_of_pequiv (stability_pequiv _ _ _), rewrite succ_add, exact H},
-- { intro g h, esimp, }
-- end
definition loop_pequiv_loop_con {A B : Type*} (f : A ≃* B) (p q : Ω A)
: loop_pequiv_loop f (p ⬝ q) = loop_pequiv_loop f p ⬝ loop_pequiv_loop f q :=
loopn_pequiv_loopn_con 0 f p q
definition iterated_loop_ptrunc_pequiv_con {n : ℕ₋₂} {k : } {A : Type*}
(p q : Ω[succ k] (ptrunc (n+succ k) A)) :
iterated_loop_ptrunc_pequiv n (succ k) A (p ⬝ q) =
trunc_concat (iterated_loop_ptrunc_pequiv n (succ k) A p)
(iterated_loop_ptrunc_pequiv n (succ k) A q) :=
begin
refine _ ⬝ loop_ptrunc_pequiv_con _ _,
exact ap !loop_ptrunc_pequiv !loop_pequiv_loop_con
end
theorem inv_respect_binary_operation {A B : Type} (f : A ≃ B) (mA : A → A → A) (mB : B → B → B)
(p : Πa₁ a₂, f (mA a₁ a₂) = mB (f a₁) (f a₂)) (b₁ b₂ : B) :
f⁻¹ (mB b₁ b₂) = mA (f⁻¹ b₁) (f⁻¹ b₂) :=
begin
refine is_equiv_rect' f⁻¹ _ _ b₁, refine is_equiv_rect' f⁻¹ _ _ b₂,
intros a₂ a₁, apply inv_eq_of_eq, symmetry, exact p a₁ a₂
end
definition iterated_loop_ptrunc_pequiv_inv_con {n : ℕ₋₂} {k : } {A : Type*}
(p q : ptrunc n (Ω[succ k] A)) :
(iterated_loop_ptrunc_pequiv n (succ k) A)⁻¹ᵉ* (trunc_concat p q) =
(iterated_loop_ptrunc_pequiv n (succ k) A)⁻¹ᵉ* p ⬝
(iterated_loop_ptrunc_pequiv n (succ k) A)⁻¹ᵉ* q :=
inv_respect_binary_operation (iterated_loop_ptrunc_pequiv n (succ k) A) concat trunc_concat
(@iterated_loop_ptrunc_pequiv_con n k A) p q
definition phomotopy_group_pequiv_loop_ptrunc_con {k : } {A : Type*} (p q : πg[k +1] A) :
phomotopy_group_pequiv_loop_ptrunc (succ k) A (p * q) =
phomotopy_group_pequiv_loop_ptrunc (succ k) A p ⬝
phomotopy_group_pequiv_loop_ptrunc (succ k) A q :=
begin
refine _ ⬝ !loopn_pequiv_loopn_con,
exact ap (loopn_pequiv_loopn _ _) !iterated_loop_ptrunc_pequiv_inv_con
end
definition phomotopy_group_pequiv_loop_ptrunc_inv_con {k : } {A : Type*}
(p q : Ω[succ k] (ptrunc (succ k) A)) :
(phomotopy_group_pequiv_loop_ptrunc (succ k) A)⁻¹ᵉ* (p ⬝ q) =
(phomotopy_group_pequiv_loop_ptrunc (succ k) A)⁻¹ᵉ* p *
(phomotopy_group_pequiv_loop_ptrunc (succ k) A)⁻¹ᵉ* q :=
inv_respect_binary_operation (phomotopy_group_pequiv_loop_ptrunc (succ k) A) mul concat
(@phomotopy_group_pequiv_loop_ptrunc_con k A) p q
definition tcast [constructor] {n : ℕ₋₂} {A B : n-Type*} (p : A = B) : A →* B :=
pcast (ap ptrunctype.to_pType p)
definition tr_mul_tr {n : } {A : Type*} (p q : Ω[succ n] A)
: tr p *[π[n + 1] A] tr q = tr (p ⬝ q) :=
idp
-- use this in proof for ghomotopy_group_succ_in
definition phomotopy_group_succ_in2_con {A : Type*} {n : } (g h : πg[succ n +1] A) :
pcast (phomotopy_group_succ_in2 A (succ n)) (g * h) =
pcast (phomotopy_group_succ_in2 A (succ n)) g * pcast (phomotopy_group_succ_in2 A (succ n)) h :=
begin
induction g with p, induction h with q, esimp,
rewrite [-+tr_eq_cast_ap, ↑phomotopy_group_succ_in2, -+tr_compose],
refine ap (transport _ _) !tr_mul_tr ⬝ _,
rewrite [+trunc_transport],
apply ap tr, apply loop_space_succ_eq_in_concat,
end
definition stability_eq (k n : ) (H : k + 3 ≤ 2 * n) : πg[k+1 +1] (S. (n+1)) = πg[k+1] (S. n) :=
begin
fapply Group_eq,
{ exact equiv_of_pequiv (stability_pequiv (succ k) n H)},
{ intro g h,
refine _ ⬝ !phomotopy_group_pequiv_loop_ptrunc_inv_con,
apply ap !phomotopy_group_pequiv_loop_ptrunc⁻¹ᵉ*,
refine ap (loopn_pequiv_loopn _ _) _ ⬝ !loopn_pequiv_loopn_con,
refine ap !phomotopy_group_pequiv_loop_ptrunc _ ⬝ !phomotopy_group_pequiv_loop_ptrunc_con,
apply phomotopy_group_succ_in2_con
}
end
end sphere