fix indexing for homotopy group of presprectrum
This commit is contained in:
parent
bcb78b4575
commit
9b624edb9f
1 changed files with 7 additions and 7 deletions
|
@ -729,28 +729,28 @@ namespace spectrum
|
||||||
/- homotopy group of a prespectrum -/
|
/- homotopy group of a prespectrum -/
|
||||||
|
|
||||||
definition pshomotopy_group_hom (n : ℤ) (E : prespectrum) (k : ℕ)
|
definition pshomotopy_group_hom (n : ℤ) (E : prespectrum) (k : ℕ)
|
||||||
: πag[k + 2] (E (-n - 2 + k)) →g πag[k + 3] (E (-n - 2 + (k + 1))) :=
|
: πag[k + 2] (E (-n + 2 + k)) →g πag[k + 3] (E (-n + 2 + (k + 1))) :=
|
||||||
begin
|
begin
|
||||||
refine _ ∘g π→g[k+2] (glue E _),
|
refine _ ∘g π→g[k+2] (glue E _),
|
||||||
refine (ghomotopy_group_succ_in _ (k+1))⁻¹ᵍ ∘g _,
|
refine (ghomotopy_group_succ_in _ (k+1))⁻¹ᵍ ∘g _,
|
||||||
refine homotopy_group_isomorphism_of_pequiv (k+1)
|
refine homotopy_group_isomorphism_of_pequiv (k+1)
|
||||||
(loop_pequiv_loop (pequiv_of_eq (ap E (add.assoc (-n - 2) k 1))))
|
(loop_pequiv_loop (pequiv_of_eq (ap E (add.assoc (-n + 2) k 1))))
|
||||||
end
|
end
|
||||||
|
|
||||||
definition pshomotopy_group (n : ℤ) (E : prespectrum) : AbGroup :=
|
definition pshomotopy_group (n : ℤ) (E : prespectrum) : AbGroup :=
|
||||||
group.seq_colim (λ(k : ℕ), πag[k+2] (E (-n - 2 + k))) (pshomotopy_group_hom n E)
|
group.seq_colim (λ(k : ℕ), πag[k+2] (E (-n + 2 + k))) (pshomotopy_group_hom n E)
|
||||||
|
|
||||||
notation `πₚₛ[`:95 n:0 `]`:0 := pshomotopy_group n
|
notation `πₚₛ[`:95 n:0 `]`:0 := pshomotopy_group n
|
||||||
|
|
||||||
definition pshomotopy_group_fun (n : ℤ) {E F : prespectrum} (f : E →ₛ F) :
|
definition pshomotopy_group_fun (n : ℤ) {E F : prespectrum} (f : E →ₛ F) :
|
||||||
πₚₛ[n] E →g πₚₛ[n] F :=
|
πₚₛ[n] E →g πₚₛ[n] F :=
|
||||||
proof
|
proof
|
||||||
group.seq_colim_functor (λk, π→g[k+2] (f (-n - 2 +[ℤ] k)))
|
group.seq_colim_functor (λk, π→g[k+2] (f (-n + 2 +[ℤ] k)))
|
||||||
begin
|
begin
|
||||||
intro k,
|
intro k,
|
||||||
note sq1 := homotopy_group_homomorphism_psquare (k+2) (ptranspose (smap.glue_square f (-n - 2 +[ℤ] k))),
|
note sq1 := homotopy_group_homomorphism_psquare (k+2) (ptranspose (smap.glue_square f (-n + 2 +[ℤ] k))),
|
||||||
note sq2 := homotopy_group_functor_psquare (k+2) (ap1_psquare (ptransport_natural E F f (add.assoc (-n - 2) k 1))),
|
note sq2 := homotopy_group_functor_psquare (k+2) (ap1_psquare (ptransport_natural E F f (add.assoc (-n + 2) k 1))),
|
||||||
note sq3 := (homotopy_group_succ_in_natural (k+2) (f (-n - 2 +[ℤ] (k+1))))⁻¹ʰᵗʸʰ,
|
note sq3 := (homotopy_group_succ_in_natural (k+2) (f (-n + 2 +[ℤ] (k+1))))⁻¹ʰᵗʸʰ,
|
||||||
note sq4 := hsquare_of_psquare sq2,
|
note sq4 := hsquare_of_psquare sq2,
|
||||||
note rect := sq1 ⬝htyh sq4 ⬝htyh sq3,
|
note rect := sq1 ⬝htyh sq4 ⬝htyh sq3,
|
||||||
exact sorry --sq1 ⬝htyh sq4 ⬝htyh sq3,
|
exact sorry --sq1 ⬝htyh sq4 ⬝htyh sq3,
|
||||||
|
|
Loading…
Reference in a new issue