add sorry's to make library compile

This commit is contained in:
Floris van Doorn 2017-07-07 22:38:06 +01:00
parent 90f4acb3f6
commit 9c271470ca
2 changed files with 16 additions and 18 deletions

View file

@ -82,7 +82,7 @@ namespace fwedge
{ reflexivity },
{ apply eq_pathover_id_right,
refine ap_compose pwedge_of_fwedge _ _ ⬝ ap02 _ !elim_glue ⬝ !ap_con ⬝
!elim_glue ◾ (!ap_inv ⬝ !elim_glue⁻²) ⬝ph _, exact hrfl } end end}},
!elim_glue ◾ (!ap_inv ⬝ !elim_glue⁻²) ⬝ph _, exact hrfl } end end}},
{ exact glue ff }
end
@ -180,48 +180,48 @@ namespace fwedge
end
-- left:
definition prod_funct_comp {A B X Y : Type*} (f : X →* Y) : (A →* X) × (B →* X) → (A →* Y) × (B →* Y) :=
definition prod_funct_comp {A B X Y : Type*} (f : X →* Y) : (A →* X) × (B →* X) → (A →* Y) × (B →* Y) :=
prod_functor (pcompose f) (pcompose f)
-- right:
definition left_comp_pi_bool_funct {A B X Y : Type*} (f : X →* Y) : (Π u, (bool.rec A B u →* X)) → (Π u, (bool.rec A B u →* Y)) :=
definition left_comp_pi_bool_funct {A B X Y : Type*} (f : X →* Y) : (Π u, (bool.rec A B u →* X)) → (Π u, (bool.rec A B u →* Y)) :=
begin
intro, intro, exact f ∘* (a u)
end
definition left_comp_pi_bool {A B X Y : Type*} (f : X →* Y) : Π u, ((bool.rec A B u →* X) → (bool.rec A B u →* Y)) :=
definition left_comp_pi_bool {A B X Y : Type*} (f : X →* Y) : Π u, ((bool.rec A B u →* X) → (bool.rec A B u →* Y)) :=
begin
intro, intro, exact f∘* a
end
-- hsquare 1:
definition prod_to_pi_bool_nat_square {A B X Y : Type*} (f : X →* Y) :
definition prod_to_pi_bool_nat_square {A B X Y : Type*} (f : X →* Y) :
hsquare (prod_pi_bool_comp_funct X) (prod_pi_bool_comp_funct Y) (prod_funct_comp f) (@left_comp_pi_bool_funct A B X Y f) :=
begin
begin
intro x, fapply eq_of_homotopy, intro u, induction u, esimp, esimp
end
-- hsquare 2:
definition fwedge_pmap_nat_square {A B X Y : Type*} (f : X →* Y) :
definition fwedge_pmap_nat_square {A B X Y : Type*} (f : X →* Y) :
hsquare (fwedge_pmap_equiv (bool.rec A B) X)⁻¹ᵉ (fwedge_pmap_equiv (bool.rec A B) Y)⁻¹ᵉ (left_comp_pi_bool_funct f) (pcompose f) :=
begin
intro h, esimp, fapply pmap_eq,
begin
intro h, esimp, fapply pmap_eq,
exact fwedge_pmap_nat₂ (λ u, bool.rec A B u) f h,
esimp,
end
-- hsquare 3:
definition fwedge_to_pwedge_nat_square {A B X Y : Type*} (f : X →* Y) :
hsquare (pequiv_ppcompose_right (pwedge_pequiv_fwedge A B)) (pequiv_ppcompose_right (pwedge_pequiv_fwedge A B)) (pcompose f) (pcompose f) :=
begin
definition fwedge_to_pwedge_nat_square {A B X Y : Type*} (f : X →* Y) :
hsquare (pequiv_ppcompose_right (pwedge_pequiv_fwedge A B)) (pequiv_ppcompose_right (pwedge_pequiv_fwedge A B)) (pcompose f) (pcompose f) :=
begin
exact sorry
end
definition pwedge_pmap_nat₂ (A B X Y : Type*) (f : X →* Y) (h : A →* X) (k : B →* X) : Π (w : A B),
definition pwedge_pmap_nat₂ (A B X Y : Type*) (f : X →* Y) (h : A →* X) (k : B →* X) : Π (w : A B),
(f ∘* (pwedge_pmap h k)) w = pwedge_pmap (f ∘* h )(f ∘* k) w :=
have H : _, from
(@prod_to_pi_bool_nat_square A B X Y f) ⬝htyh (fwedge_pmap_nat_square f) ⬝htyh (fwedge_to_pwedge_nat_square f),
proof H qed
sorry
-- SA to here 7/5

View file

@ -23,7 +23,7 @@ namespace wedge
induction x,
{ reflexivity },
{ reflexivity },
{ apply eq_pathover_id_right,
{ apply eq_pathover_id_right,
apply hdeg_square,
exact ap_compose wedge_flip _ _ ⬝ ap02 _ !elim_glue ⬝ !ap_inv ⬝ !elim_glue⁻² ⬝ !inv_inv }
end
@ -48,7 +48,7 @@ namespace wedge
exact (glue ⋆),
exact inr (inr a),
-- exact elim_glue _ _ _,
exact sorry
end
@ -65,5 +65,3 @@ namespace wedge
... ≃* plift.{u v} A plift.{u v} B : by exact pwedge_pequiv !pequiv_plift !pequiv_plift
end wedge