add sorry's to make library compile
This commit is contained in:
parent
90f4acb3f6
commit
9c271470ca
2 changed files with 16 additions and 18 deletions
|
@ -82,7 +82,7 @@ namespace fwedge
|
||||||
{ reflexivity },
|
{ reflexivity },
|
||||||
{ apply eq_pathover_id_right,
|
{ apply eq_pathover_id_right,
|
||||||
refine ap_compose pwedge_of_fwedge _ _ ⬝ ap02 _ !elim_glue ⬝ !ap_con ⬝
|
refine ap_compose pwedge_of_fwedge _ _ ⬝ ap02 _ !elim_glue ⬝ !ap_con ⬝
|
||||||
!elim_glue ◾ (!ap_inv ⬝ !elim_glue⁻²) ⬝ph _, exact hrfl } end end}},
|
!elim_glue ◾ (!ap_inv ⬝ !elim_glue⁻²) ⬝ph _, exact hrfl } end end}},
|
||||||
{ exact glue ff }
|
{ exact glue ff }
|
||||||
end
|
end
|
||||||
|
|
||||||
|
@ -180,48 +180,48 @@ namespace fwedge
|
||||||
end
|
end
|
||||||
|
|
||||||
-- left:
|
-- left:
|
||||||
definition prod_funct_comp {A B X Y : Type*} (f : X →* Y) : (A →* X) × (B →* X) → (A →* Y) × (B →* Y) :=
|
definition prod_funct_comp {A B X Y : Type*} (f : X →* Y) : (A →* X) × (B →* X) → (A →* Y) × (B →* Y) :=
|
||||||
prod_functor (pcompose f) (pcompose f)
|
prod_functor (pcompose f) (pcompose f)
|
||||||
|
|
||||||
-- right:
|
-- right:
|
||||||
definition left_comp_pi_bool_funct {A B X Y : Type*} (f : X →* Y) : (Π u, (bool.rec A B u →* X)) → (Π u, (bool.rec A B u →* Y)) :=
|
definition left_comp_pi_bool_funct {A B X Y : Type*} (f : X →* Y) : (Π u, (bool.rec A B u →* X)) → (Π u, (bool.rec A B u →* Y)) :=
|
||||||
begin
|
begin
|
||||||
intro, intro, exact f ∘* (a u)
|
intro, intro, exact f ∘* (a u)
|
||||||
end
|
end
|
||||||
|
|
||||||
definition left_comp_pi_bool {A B X Y : Type*} (f : X →* Y) : Π u, ((bool.rec A B u →* X) → (bool.rec A B u →* Y)) :=
|
definition left_comp_pi_bool {A B X Y : Type*} (f : X →* Y) : Π u, ((bool.rec A B u →* X) → (bool.rec A B u →* Y)) :=
|
||||||
begin
|
begin
|
||||||
intro, intro, exact f∘* a
|
intro, intro, exact f∘* a
|
||||||
end
|
end
|
||||||
|
|
||||||
-- hsquare 1:
|
-- hsquare 1:
|
||||||
definition prod_to_pi_bool_nat_square {A B X Y : Type*} (f : X →* Y) :
|
definition prod_to_pi_bool_nat_square {A B X Y : Type*} (f : X →* Y) :
|
||||||
hsquare (prod_pi_bool_comp_funct X) (prod_pi_bool_comp_funct Y) (prod_funct_comp f) (@left_comp_pi_bool_funct A B X Y f) :=
|
hsquare (prod_pi_bool_comp_funct X) (prod_pi_bool_comp_funct Y) (prod_funct_comp f) (@left_comp_pi_bool_funct A B X Y f) :=
|
||||||
begin
|
begin
|
||||||
intro x, fapply eq_of_homotopy, intro u, induction u, esimp, esimp
|
intro x, fapply eq_of_homotopy, intro u, induction u, esimp, esimp
|
||||||
end
|
end
|
||||||
|
|
||||||
-- hsquare 2:
|
-- hsquare 2:
|
||||||
definition fwedge_pmap_nat_square {A B X Y : Type*} (f : X →* Y) :
|
definition fwedge_pmap_nat_square {A B X Y : Type*} (f : X →* Y) :
|
||||||
hsquare (fwedge_pmap_equiv (bool.rec A B) X)⁻¹ᵉ (fwedge_pmap_equiv (bool.rec A B) Y)⁻¹ᵉ (left_comp_pi_bool_funct f) (pcompose f) :=
|
hsquare (fwedge_pmap_equiv (bool.rec A B) X)⁻¹ᵉ (fwedge_pmap_equiv (bool.rec A B) Y)⁻¹ᵉ (left_comp_pi_bool_funct f) (pcompose f) :=
|
||||||
begin
|
begin
|
||||||
intro h, esimp, fapply pmap_eq,
|
intro h, esimp, fapply pmap_eq,
|
||||||
exact fwedge_pmap_nat₂ (λ u, bool.rec A B u) f h,
|
exact fwedge_pmap_nat₂ (λ u, bool.rec A B u) f h,
|
||||||
esimp,
|
esimp,
|
||||||
end
|
end
|
||||||
|
|
||||||
-- hsquare 3:
|
-- hsquare 3:
|
||||||
definition fwedge_to_pwedge_nat_square {A B X Y : Type*} (f : X →* Y) :
|
definition fwedge_to_pwedge_nat_square {A B X Y : Type*} (f : X →* Y) :
|
||||||
hsquare (pequiv_ppcompose_right (pwedge_pequiv_fwedge A B)) (pequiv_ppcompose_right (pwedge_pequiv_fwedge A B)) (pcompose f) (pcompose f) :=
|
hsquare (pequiv_ppcompose_right (pwedge_pequiv_fwedge A B)) (pequiv_ppcompose_right (pwedge_pequiv_fwedge A B)) (pcompose f) (pcompose f) :=
|
||||||
begin
|
begin
|
||||||
exact sorry
|
exact sorry
|
||||||
end
|
end
|
||||||
|
|
||||||
definition pwedge_pmap_nat₂ (A B X Y : Type*) (f : X →* Y) (h : A →* X) (k : B →* X) : Π (w : A ∨ B),
|
definition pwedge_pmap_nat₂ (A B X Y : Type*) (f : X →* Y) (h : A →* X) (k : B →* X) : Π (w : A ∨ B),
|
||||||
(f ∘* (pwedge_pmap h k)) w = pwedge_pmap (f ∘* h )(f ∘* k) w :=
|
(f ∘* (pwedge_pmap h k)) w = pwedge_pmap (f ∘* h )(f ∘* k) w :=
|
||||||
have H : _, from
|
have H : _, from
|
||||||
(@prod_to_pi_bool_nat_square A B X Y f) ⬝htyh (fwedge_pmap_nat_square f) ⬝htyh (fwedge_to_pwedge_nat_square f),
|
(@prod_to_pi_bool_nat_square A B X Y f) ⬝htyh (fwedge_pmap_nat_square f) ⬝htyh (fwedge_to_pwedge_nat_square f),
|
||||||
proof H qed
|
sorry
|
||||||
|
|
||||||
-- SA to here 7/5
|
-- SA to here 7/5
|
||||||
|
|
||||||
|
|
|
@ -23,7 +23,7 @@ namespace wedge
|
||||||
induction x,
|
induction x,
|
||||||
{ reflexivity },
|
{ reflexivity },
|
||||||
{ reflexivity },
|
{ reflexivity },
|
||||||
{ apply eq_pathover_id_right,
|
{ apply eq_pathover_id_right,
|
||||||
apply hdeg_square,
|
apply hdeg_square,
|
||||||
exact ap_compose wedge_flip _ _ ⬝ ap02 _ !elim_glue ⬝ !ap_inv ⬝ !elim_glue⁻² ⬝ !inv_inv }
|
exact ap_compose wedge_flip _ _ ⬝ ap02 _ !elim_glue ⬝ !ap_inv ⬝ !elim_glue⁻² ⬝ !inv_inv }
|
||||||
end
|
end
|
||||||
|
@ -48,7 +48,7 @@ namespace wedge
|
||||||
exact (glue ⋆),
|
exact (glue ⋆),
|
||||||
exact inr (inr a),
|
exact inr (inr a),
|
||||||
-- exact elim_glue _ _ _,
|
-- exact elim_glue _ _ _,
|
||||||
|
exact sorry
|
||||||
|
|
||||||
end
|
end
|
||||||
|
|
||||||
|
@ -65,5 +65,3 @@ namespace wedge
|
||||||
... ≃* plift.{u v} A ∨ plift.{u v} B : by exact pwedge_pequiv !pequiv_plift !pequiv_plift
|
... ≃* plift.{u v} A ∨ plift.{u v} B : by exact pwedge_pequiv !pequiv_plift !pequiv_plift
|
||||||
|
|
||||||
end wedge
|
end wedge
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue