feat(spectrum): start on the LES of homotopy groups for spectra
This commit is contained in:
parent
c9af080cc2
commit
9d00ea2f6f
1 changed files with 59 additions and 5 deletions
|
@ -1,11 +1,11 @@
|
|||
/-
|
||||
Copyright (c) 2016 Michael Shulman. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Michael Shulman
|
||||
Authors: Michael Shulman, Floris van Doorn
|
||||
|
||||
-/
|
||||
|
||||
import types.int types.pointed types.trunc homotopy.susp algebra.homotopy_group homotopy.chain_complex cubical
|
||||
import types.int types.pointed types.trunc homotopy.susp algebra.homotopy_group homotopy.chain_complex cubical .splice homotopy.LES_of_homotopy_groups
|
||||
open eq nat int susp pointed pmap sigma is_equiv equiv fiber algebra trunc trunc_index pi
|
||||
|
||||
/-----------------------------------------
|
||||
|
@ -23,6 +23,11 @@ namespace sigma
|
|||
end sigma
|
||||
open sigma
|
||||
|
||||
namespace group
|
||||
open is_trunc
|
||||
definition pSet_of_Group (G : Group) : Set* := ptrunctype.mk G _ 1
|
||||
end group open group
|
||||
|
||||
namespace eq
|
||||
|
||||
definition pathover_eq_Fl' {A B : Type} {f : A → B} {a₁ a₂ : A} {b : B} (p : a₁ = a₂) (q : f a₂ = b) : (ap f p) ⬝ q =[p] q :=
|
||||
|
@ -351,9 +356,15 @@ namespace spectrum
|
|||
-- read off the homotopy groups without any tedious case-analysis of
|
||||
-- n. We increment by 2 in order to ensure that they are all
|
||||
-- automatically abelian groups.
|
||||
definition shomotopy_group [constructor] (n : ℤ) (E : spectrum) : CommGroup := πag[0+2] (E (2 + n))
|
||||
definition shomotopy_group [constructor] (n : ℤ) (E : spectrum) : CommGroup := πag[0+2] (E (n + 2))
|
||||
|
||||
notation `πₛ[`:95 n:0 `] `:0 E:95 := shomotopy_group n E
|
||||
notation `πₛ[`:95 n:0 `]`:0 := shomotopy_group n
|
||||
|
||||
definition shomotopy_group_fun [constructor] (n : ℤ) {E F : spectrum} (f : E →ₛ F) :
|
||||
πₛ[n] E →g πₛ[n] F :=
|
||||
π→g[1+1] (f (n + 2))
|
||||
|
||||
notation `πₛ→[`:95 n:0 `]`:0 := shomotopy_group_fun n
|
||||
|
||||
/-------------------------------
|
||||
Cotensor of spectra by types
|
||||
|
@ -377,10 +388,53 @@ namespace spectrum
|
|||
Fibers and long exact sequences
|
||||
-----------------------------------------/
|
||||
|
||||
definition sfiber {N : succ_str} (E F : gen_spectrum N) (f : E →ₛ F) : gen_spectrum N :=
|
||||
definition sfiber {N : succ_str} {X Y : gen_spectrum N} (f : X →ₛ Y) : gen_spectrum N :=
|
||||
spectrum.MK (λn, pfiber (f n))
|
||||
(λn, pfiber_loop_space (f (S n)) ∘*ᵉ pfiber_equiv_of_square (sglue_square f n))
|
||||
|
||||
/- the map from the fiber to the domain. The fact that the square commutes requires work -/
|
||||
-- definition spoint {N : succ_str} {X Y : gen_spectrum N} (f : X →ₛ Y) : sfiber f →ₛ X :=
|
||||
-- smap.mk (λn, ppoint (f n))
|
||||
-- begin
|
||||
-- intro n, exact sorry
|
||||
-- end
|
||||
|
||||
/- TODO: fill in sorry's (and possibly generalize 2 to n) -/
|
||||
definition π_glue (X : spectrum) (n : ℤ) : π*[2] (X (pred n)) ≃* π*[3] (X n) :=
|
||||
sorry
|
||||
|
||||
definition π_glue_square {X Y : spectrum} (f : X →ₛ Y) (n : ℤ) :
|
||||
π_glue Y n ∘* π→*[2] (f (pred n)) ~* π→*[3] (f n) ∘* π_glue X n :=
|
||||
sorry
|
||||
|
||||
section
|
||||
open chain_complex prod fin group
|
||||
|
||||
universe variable u
|
||||
parameters {X Y : spectrum.{u}} (f : X →ₛ Y)
|
||||
|
||||
definition LES_of_shomotopy_groups : chain_complex -3ℤ :=
|
||||
splice (λ(n : ℤ), LES_of_homotopy_groups (f n)) (2, 0) (π_glue Y) (π_glue X) (π_glue_square f)
|
||||
|
||||
-- In the comments below is a start on an explicit description of the LES for spectra
|
||||
-- Maybe it's slightly nicer to work with than the above version
|
||||
|
||||
-- definition shomotopy_groups [reducible] : -3ℤ → CommGroup
|
||||
-- | (n, fin.mk 0 H) := πₛ[n] Y
|
||||
-- | (n, fin.mk 1 H) := πₛ[n] X
|
||||
-- | (n, fin.mk k H) := πₛ[n] (sfiber f)
|
||||
|
||||
-- definition shomotopy_groups_fun : Π(n : -3ℤ), shomotopy_groups (S n) →g shomotopy_groups n
|
||||
-- | (n, fin.mk 0 H) := proof π→g[1+1] (f (n + 2)) qed --π→*[2] f (n+2)
|
||||
-- --pmap_of_homomorphism (πₛ→[n] f)
|
||||
-- | (n, fin.mk 1 H) := proof π→g[1+1] (ppoint (f (n + 2))) qed
|
||||
-- | (n, fin.mk 2 H) :=
|
||||
-- proof _ ∘g π→g[1+1] equiv_glue Y (pred n + 2) qed
|
||||
-- --π→*[n] boundary_map ∘* pcast (ap (ptrunc 0) (loop_space_succ_eq_in Y n))
|
||||
-- | (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
|
||||
|
||||
end
|
||||
|
||||
structure sp_chain_complex (N : succ_str) : Type :=
|
||||
(car : N → spectrum)
|
||||
(fn : Π(n : N), car (S n) →ₛ car n)
|
||||
|
|
Loading…
Reference in a new issue