From 9d39f7771f083a1eb93da4512476f0ea4fbc9669 Mon Sep 17 00:00:00 2001 From: Floris van Doorn Date: Wed, 5 Jul 2017 15:42:27 +0100 Subject: [PATCH] redefine is_trunc_ppi and is_trunc_spi with unbundled families --- homotopy/EM.hlean | 2 +- homotopy/strunc.hlean | 30 ++++++++++++----------------- pointed_pi.hlean | 44 ++++++++++++++++++++++--------------------- 3 files changed, 36 insertions(+), 40 deletions(-) diff --git a/homotopy/EM.hlean b/homotopy/EM.hlean index 787a720..71fa19d 100644 --- a/homotopy/EM.hlean +++ b/homotopy/EM.hlean @@ -405,7 +405,7 @@ namespace EM begin cases n with n, { exact _ }, cases Y with Y H1 H2, cases Y with Y y₀, - exact is_trunc_pmap_of_is_conn X n -1 (ptrunctype.mk Y _ y₀), + exact is_trunc_pmap_of_is_conn X n -1 _ (pointed.MK Y y₀) !le.refl H2, end open category functor nat_trans diff --git a/homotopy/strunc.hlean b/homotopy/strunc.hlean index f12c54a..db4f67c 100644 --- a/homotopy/strunc.hlean +++ b/homotopy/strunc.hlean @@ -251,39 +251,33 @@ section variables (A : Type*) (n : ℤ) [H : is_conn (maxm2 n) A] include H - definition is_trunc_maxm2_ppi (k : ℤ) (P : A → (maxm2 (n+1+k))-Type*) - : is_trunc (maxm2 k) (Π*(a : A), P a) := + definition is_trunc_maxm2_ppi (k l : ℤ) (H3 : l ≤ n+1+k) (P : A → Type*) + (H2 : Πa, is_trunc (maxm2 l) (P a)) : is_trunc (maxm2 k) (Π*(a : A), P a) := is_trunc_maxm2_of_maxm1 (Π*(a : A), P a) k - (@is_trunc_ppi_of_is_conn A (maxm1m1 n) - (is_conn_maxm1_of_maxm2 A n H) (maxm1m1 k) - (λ a, ptrunctype.mk (P a) (is_trunc_of_le (P a) (maxm2_le n k)) pt)) + (@is_trunc_ppi_of_is_conn A (maxm1m1 n) (is_conn_maxm1_of_maxm2 A n H) (maxm1m1 k) _ + (le.trans (maxm2_monotone H3) (maxm2_le n k)) P H2) - definition is_strunc_spi_of_is_conn (k : ℤ) (P : A → (n+1+k)-spectrum) - : is_strunc k (spi A P) := + definition is_strunc_spi_of_is_conn (k l : ℤ) (H3 : l ≤ n+1+k) (P : A → spectrum) + (H2 : Πa, is_strunc l (P a)) : is_strunc k (spi A P) := begin intro m, unfold spi, - exact is_trunc_maxm2_ppi A n (k+m) - (λ a, ptrunctype.mk (P a m) - (is_trunc_maxm2_change_int (P a m) (add.assoc (n+1) k m) - (truncspectrum.struct (P a) m)) pt) + exact is_trunc_maxm2_ppi A n (k+m) _ (le.trans (add_le_add_right H3 _) + (le_of_eq (add.assoc (n+1) k m))) (λ a, P a m) (λa, H2 a m) end end -definition is_strunc_spi_of_le {A : Type*} (k n : ℤ) (H : n ≤ k) (P : A → n-spectrum) - : is_strunc k (spi A P) := +definition is_strunc_spi_of_le {A : Type*} (k n : ℤ) (H : n ≤ k) (P : A → spectrum) + (H2 : Πa, is_strunc n (P a)) : is_strunc k (spi A P) := begin assert K : n ≤ -[1+ 0] + 1 + k, { krewrite (int.zero_add k), exact H }, - { exact @is_strunc_spi_of_is_conn A (-[1+ 0]) - (is_conn.is_conn_minus_two A) k - (λ a, truncspectrum.mk (P a) (is_strunc_of_le (P a) K - (truncspectrum.struct (P a)))) } + { exact @is_strunc_spi_of_is_conn A (-[1+ 0]) (is_conn.is_conn_minus_two A) k _ K P H2 } end definition is_strunc_spi {A : Type*} (n : ℤ) (P : A → spectrum) (H : Πa, is_strunc n (P a)) : is_strunc n (spi A P) := -is_strunc_spi_of_le n n !le.refl (λa, truncspectrum.mk (P a) (H a)) +is_strunc_spi_of_le n n !le.refl P H definition is_strunc_sp_cotensor (n : ℤ) (A : Type*) {Y : spectrum} (H : is_strunc n Y) : is_strunc n (sp_cotensor A Y) := diff --git a/pointed_pi.hlean b/pointed_pi.hlean index ba5ab02..6a35cea 100644 --- a/pointed_pi.hlean +++ b/pointed_pi.hlean @@ -494,7 +494,7 @@ namespace is_conn variables (A : Type*) (n : ℕ₋₂) [H : is_conn (n.+1) A] include H - definition is_contr_ppi_match (P : A → (n.+1)-Type*) + definition is_contr_ppi_match (P : A → Type*) (H : Πa, is_trunc (n.+1) (P a)) : is_contr (Π*(a : A), P a) := begin apply is_contr.mk pt, @@ -504,44 +504,46 @@ namespace is_conn { krewrite (is_conn.elim_β n), apply con.left_inv } end - definition is_trunc_ppi_of_is_conn (k : ℕ₋₂) (P : A → (n.+1+2+k)-Type*) - : is_trunc k.+1 (Π*(a : A), P a) := + -- definition is_trunc_ppi_of_is_conn (k : ℕ₋₂) (P : A → Type*) + -- : is_trunc k.+1 (Π*(a : A), P a) := + + definition is_trunc_ppi_of_is_conn (k l : ℕ₋₂) (H2 : l ≤ n.+1+2+k) + (P : A → Type*) (H3 : Πa, is_trunc l (P a)) : + is_trunc k.+1 (Π*(a : A), P a) := begin - induction k with k IH, + have H4 : Πa, is_trunc (n.+1+2+k) (P a), from λa, is_trunc_of_le (P a) H2, + clear H2 H3, revert P H4, + induction k with k IH: intro P H4, { apply is_prop_of_imp_is_contr, intro f, - apply is_contr_ppi_match }, + apply is_contr_ppi_match A n P H4 }, { apply is_trunc_succ_of_is_trunc_loop (trunc_index.succ_le_succ (trunc_index.minus_two_le k)), intro f, - apply @is_trunc_equiv_closed_rev _ _ k.+1 - (ppi_loop_equiv f), + apply @is_trunc_equiv_closed_rev _ _ k.+1 (ppi_loop_equiv f), apply IH, intro a, - apply ptrunctype.mk (Ω (pType.mk (P a) (f a))), - { apply is_trunc_loop, exact is_trunc_ptrunctype (P a) }, - { exact pt } } + apply is_trunc_loop, apply H4 } end - definition is_trunc_pmap_of_is_conn (k : ℕ₋₂) (B : (n.+1+2+k)-Type*) - : is_trunc k.+1 (A →* B) := + + definition is_trunc_pmap_of_is_conn (k l : ℕ₋₂) (B : Type*) (H2 : l ≤ n.+1+2+k) + (H3 : is_trunc l B) : is_trunc k.+1 (A →* B) := @is_trunc_equiv_closed _ _ k.+1 (ppi_equiv_pmap A B) - (is_trunc_ppi_of_is_conn A n k (λ a, B)) + (is_trunc_ppi_of_is_conn A n k l H2 (λ a, B) _) end -- this is probably much easier to prove directly - definition is_trunc_ppi (A : Type*) (n k : ℕ₋₂) (H : n ≤ k) (P : A → n-Type*) - : is_trunc k (Π*(a : A), P a) := + definition is_trunc_ppi (A : Type*) (n k : ℕ₋₂) (H : n ≤ k) (P : A → Type*) + (H2 : Πa, is_trunc n (P a)) : is_trunc k (Π*(a : A), P a) := begin cases k with k, - { apply trunc.is_contr_of_merely_prop, - { exact @is_trunc_ppi_of_is_conn A -2 (is_conn_minus_one A (tr pt)) -2 - (λ a, ptrunctype.mk (P a) (is_trunc_of_le (P a) - (trunc_index.le.step H)) pt) }, + { apply is_contr_of_merely_prop, + { exact @is_trunc_ppi_of_is_conn A -2 (is_conn_minus_one A (tr pt)) -2 _ + (trunc_index.le.step H) P H2 }, { exact tr pt } }, { assert K : n ≤ -1 +2+ k, { rewrite (trunc_index.add_plus_two_comm -1 k), exact H }, - { exact @is_trunc_ppi_of_is_conn A -2 (is_conn_minus_one A (tr pt)) k - (λ a, ptrunctype.mk (P a) (is_trunc_of_le (P a) K) pt) } } + { exact @is_trunc_ppi_of_is_conn A -2 (is_conn_minus_one A (tr pt)) k _ K P H2 } } end end is_conn