connectivity of loop_susp_counit

This commit is contained in:
Ulrik Buchholtz 2018-01-27 19:42:09 +01:00
parent 8acdbf3f67
commit 9d91957303

View file

@ -164,10 +164,22 @@ sorry
include HA
open is_conn trunc_index
-- connectivity of loop_susp_counit
definition is_conn_fun_loop_susp_counit {k : } (H : k ≤ 2 * n)
: is_conn_fun k (loop_susp_counit A) :=
λ a, sorry
begin
intro a, apply is_conn.is_conn_equiv_closed_rev k (fiber_loop_susp_counit_equiv a),
fapply @is_conn.is_conn_of_le (fiber prod_of_wedge (a, a)) k (2 * n)
(of_nat_le_of_nat H),
assert H : of_nat (2 * n) = of_nat n + of_nat n,
{ rewrite (of_nat_add_of_nat n n), apply ap of_nat,
apply trans (nat.mul_comm 2 n),
apply ap (λ k, k + n), exact nat.zero_add n },
rewrite H,
exact is_conn_fun_prod_of_wedge n n (a, a)
end
end
end susp