connectivity of loop_susp_counit
This commit is contained in:
parent
8acdbf3f67
commit
9d91957303
1 changed files with 13 additions and 1 deletions
|
@ -164,10 +164,22 @@ sorry
|
|||
|
||||
include HA
|
||||
|
||||
open is_conn trunc_index
|
||||
|
||||
-- connectivity of loop_susp_counit
|
||||
definition is_conn_fun_loop_susp_counit {k : ℕ} (H : k ≤ 2 * n)
|
||||
: is_conn_fun k (loop_susp_counit A) :=
|
||||
λ a, sorry
|
||||
begin
|
||||
intro a, apply is_conn.is_conn_equiv_closed_rev k (fiber_loop_susp_counit_equiv a),
|
||||
fapply @is_conn.is_conn_of_le (fiber prod_of_wedge (a, a)) k (2 * n)
|
||||
(of_nat_le_of_nat H),
|
||||
assert H : of_nat (2 * n) = of_nat n + of_nat n,
|
||||
{ rewrite (of_nat_add_of_nat n n), apply ap of_nat,
|
||||
apply trans (nat.mul_comm 2 n),
|
||||
apply ap (λ k, k + n), exact nat.zero_add n },
|
||||
rewrite H,
|
||||
exact is_conn_fun_prod_of_wedge n n (a, a)
|
||||
end
|
||||
end
|
||||
|
||||
end susp
|
||||
|
|
Loading…
Reference in a new issue